Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Oct;96(4):1261-96.
doi: 10.1152/physrev.00006.2016.

The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease

Affiliations
Free article
Review

The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease

Michael J Berridge. Physiol Rev. 2016 Oct.
Free article

Abstract

Many cellular functions are regulated by calcium (Ca(2+)) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca(2+)) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca(2+) that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca(2+) signal generated by the entry of Ca(2+) through voltage-operated channels that releases Ca(2+) from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca(2+) signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca(2+) signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca(2+) signaling are a contributory factor responsible for the onset of a large number human diseases.

PubMed Disclaimer

MeSH terms

LinkOut - more resources