Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Aug;9(8):10.1161/CIRCHEARTFAILURE.115.002593 e002593.
doi: 10.1161/CIRCHEARTFAILURE.115.002593.

Differential Response to Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure With Reduced or Preserved Ejection Fraction: Results From the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure)

Affiliations
Randomized Controlled Trial

Differential Response to Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure With Reduced or Preserved Ejection Fraction: Results From the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure)

Siu-Hin Wan et al. Circ Heart Fail. 2016 Aug.

Abstract

Background: The ROSE AHF trial (Renal Optimization Strategies Evaluation in Acute Heart Failure) found that when compared with placebo, neither low-dose dopamine (2 µg/kg per minute) nor low-dose nesiritide (0.005 μg/kg per minute without bolus) enhanced decongestion or preserved renal function in AHF patients with renal dysfunction. However, there may be differential responses to vasoactive agents in AHF patients with reduced versus preserved ejection fraction (EF). This post hoc analysis examined potential interaction between treatment effect and EF (EF ≤40% versus >40%) on the ROSE AHF end points.

Methods and results: ROSE AHF enrolled AHF patients (n=360; any EF) with renal dysfunction. The coprimary end points were cumulative urine volume and the change in serum cystatin-C in 72 hours. The effect of dopamine (interaction P=0.001) and nesiritide (interaction P=0.039) on urine volume varied by EF group. In heart failure with reduced EF, urine volume was higher with active treatment versus placebo, whereas in heart failure with preserved EF, urine volume was lower with active treatment. The effect of dopamine and nesiritide on weight change, sodium excretion, and incidence of AHF treatment failure also varied by EF group (interaction P<0.05 for all). There was no interaction between vasoactive treatment's effect and EF on change in cystatin-C. Compared with placebo, dopamine was associated with improved clinical outcomes in heart failure with reduced EF and worse clinical outcomes in heart failure with preserved EF. With nesiritide, there were no differences in clinical outcomes when compared with placebo in both heart failure with reduced EF and heart failure with preserved EF.

Conclusions: In this post hoc analysis of ROSE AHF, the response to vasoactive therapies differed in patients with heart failure with reduced EF and heart failure with preserved EF. Investigations of AHF therapies should assess the potential for differential responses in AHF with preserved versus reduced EF.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01132846.

Keywords: dopamine; heart failure; humans; incidence; kidney; natriuretic peptide, brain.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Co-Primary Endpoints in Dopamine Strategy according to Ejection Fraction Group Before imputation, 13 had missing urine volume and 36 had missing cystatin C.
Figure 2
Figure 2
Co-Primary Endpoints in Nesiritide Strategy according to Ejection Fraction Group Before imputation, 17 had missing urine volume and 30 had missing cystatin C.

Similar articles

Cited by

References

    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics-2015 update: A report from the american heart association. Circulation. 2015;131:e29–e322. - PubMed
    1. Gheorghiade M, Zannad F, Sopko G, Klein L, Pina IL, Konstam MA, Massie BM, Roland E, Targum S, Collins SP, Filippatos G, Tavazzi L. Acute heart failure syndromes: Current state and framework for future research. Circulation. 2005;112:3958–3968. - PubMed
    1. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: A report from the acute decompensated heart failure national registry (adhere) database. J Am Coll Cardiol. 2006;47:76–84. - PubMed
    1. Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, Bart BA, Bull DA, Stehlik J, LeWinter MM, Konstam MA, Huggins GS, Rouleau JL, O'Meara E, Tang WH, Starling RC, Butler J, Deswal A, Felker GM, O'Connor CM, Bonita RE, Margulies KB, Cappola TP, Ofili EO, Mann DL, Davila-Roman VG, McNulty SE, Borlaug BA, Velazquez EJ, Lee KL, Shah MR, Hernandez AF, Braunwald E, Redfield MM. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: The rose acute heart failure randomized trial. Jama. 2013;310:2533–2543. - PMC - PubMed
    1. Cotter G, Weissgarten J, Metzkor E, Moshkovitz Y, Litinski I, Tavori U, Perry C, Zaidenstein R, Golik A. Increased toxicity of high-dose furosemide versus low-dose dopamine in the treatment of refractory congestive heart failure. Clin Pharmacol Ther. 1997;62:187–193. - PubMed

Publication types

MeSH terms

Associated data