Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 9:9:169.
doi: 10.1186/s13068-016-0584-0. eCollection 2016.

The micromorphology of Trichoderma reesei analyzed in cultivations on lactose and solid lignocellulosic substrate, and its relationship with cellulase production

Affiliations

The micromorphology of Trichoderma reesei analyzed in cultivations on lactose and solid lignocellulosic substrate, and its relationship with cellulase production

Vera Novy et al. Biotechnol Biofuels. .

Abstract

Background: Trichoderma reesei is the principal producer of cellulolytic enzymes. Because of the strong influence on the enzyme production, the morphology of the filamentous fungi is a key parameter for process optimization. For cost-effective production of cellulolytic enzymes, the cultivation of T. reesei is performed on lignocellulosic waste streams. These insoluble substrates prevent the application of the conventional light microscopy for the analysis of fungal morphology. Here, we present a novel method for the micromorphological analysis based on confocal laser-scanning microscopy (CLSM) and the computer-aided image analysis. This method enabled the quantification of the dimensions of the single cell (intercalary length and cell width) and the degree of branching in cultivations on the industrially relevant substrates wheat straw and lactose. The micromorphology of two T. reesei strains, QM9414 and a carbon catabolite derepressed cre1 knockout mutant (Δcre1), was analyzed in dependence of substrate, inoculation method, and agitation velocity.

Results: Trichoderma reesei strain Δcre1 formed shorter cells (10.09 µm) on average and developed more ramified mycelia (0.36 branches/cell) than strain QM9414 (12.03 µm, 0.22 branches/cell). Cultivated on wheat straw, the average cell length of QM9414 (10.87 µm) and Δcre1 (9.74 µm) was 10 and 21 % shorter as compared to reference cultivations on lactose. When inoculation was done with spores as compared to hyphal biomass, cell lengths of QM9414 (10.97 µm) and Δcre1 (9.10 µm) were on average about 20 % shorter. Strain performance was evaluated in protein concentration and total cellulase activity, which varied between 0.69 and 2.31 FPU/mL for Δcre1 and between 0.84 and 1.64 FPU/mL for QM9414. The cell length exhibited slightly negative correlation with the protein (regression coefficient -0.04 g/(L µm), R (2) 0.33) and the cellulase (-0.30 FPU/(mL µm), R (2) 0.53) production.

Conclusions: The dimensions of the single cell of T. reesei were dependent on strain background, substrate used and process conditions applied. Micromorphological changes were correlated semi-quantitatively with the efficiency of enzyme production. In providing a process analytical tool for enzyme production by T. reesei on lignocellulosic substrate, this study has relevance for the characterization and optimization of a critical step in the overall saccharification process.

Keywords: Cellulase production; Lactose; Lignocellulose; Morphology; Trichoderma reesei; Wheat straw.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CLSM images of wheat straw cultivations by T. reesei strains QM9414 (A1, A2) and Δcre1 (B1, B2). Precultures were inoculated with 105 spores/mL (A1, B1) or with a piece of overgrown agar (A2, B2). All cultivations were incubated at 190 rpm
Fig. 2
Fig. 2
CLSM images of lactose cultivations by T. reesei strains QM9414 (A1, A2) and Δcre1 (B1, B2). Precultures were inoculated with 105 spores/mL (A1, B1) or with a piece of overgrown agar (A2, B2). All cultivations were incubated at 190 rpm
Fig. 3
Fig. 3
Influence of the inoculation method (A1, A2) and the agitation velocity (B1, B2) on cell length. Cell length was analyzed in wheat straw (A1, B1) and lactose (A2, B2) cultivations. A1, A2 Precultures were inoculated with a piece of overgrown agar (black bars) or 105 spores/mL (grey bars). B1, B2 Agitation velocity was 150 rpm (black bars) or 190 rpm (grey bars) in an orbital incubator shaker. Cultivations were accomplished with T. reesei strain Δcre1 (“cre”) or QM9414 (“QM”). Incubation was at 150 or 190 rpm, as indicated. The addition of Tween80 is marked with “Tw”. Data were taken from Table 1, where bars indicate the mean length and error bars show the spread. Data sets with 1, 2, or 3 stars mark significance in a 95, 99, and 99.9 % confidence level, respectively
Fig. 4
Fig. 4
Correlation between cell length and total cellulase activity in wheat straw cultivations (A) and total protein concentration in wheat straw and lactose cultivations (B). A Depicted are cell length (grey bars) and total cellulase activity (empty circles). Cultivations were accomplished with T. reesei strain Δcre1 (“cre”) or QM9414 (“QM”). Inoculation was with a piece of overgrown agar (“agar”) or 105 spores/mL (“spores”). Incubation was at 150 and 190 rpm, as indicated. The addition of Tween80 is marked with “Tw”. B Depicted are cell length and the corresponding protein concentration in the supernatant of all experimental setups. Data are taken from Table 1
Fig. 5
Fig. 5
Correlation between cell length and cell width. Data are taken from Table 1 and include all experimental setups

Similar articles

Cited by

References

    1. Sassner P, Galbe M, Zacchi G. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy. 2008;32(5):422–430. doi: 10.1016/j.biombioe.2007.10.014. - DOI
    1. Novy V, Longus K, Nidetzky B. From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnol Biofuels. 2015;8:46. doi: 10.1186/s13068-015-0232-0. - DOI - PMC - PubMed
    1. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) Nat Biotechnol. 2008;26(5):553–560. doi: 10.1038/nbt1403. - DOI - PubMed
    1. Grimm LH, Kelly S, Krull R, Hempel DC. Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol. 2005;69(4):375–384. doi: 10.1007/s00253-005-0213-5. - DOI - PubMed
    1. Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C. Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol. 2013;163(2):112–123. doi: 10.1016/j.jbiotec.2012.06.024. - DOI - PubMed

LinkOut - more resources