Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug 1;272(2):290-300.
doi: 10.1016/0003-9861(89)90222-1.

Rat liver chitobiase: purification, properties, and role in the lysosomal degradation of Asn-linked glycoproteins

Affiliations

Rat liver chitobiase: purification, properties, and role in the lysosomal degradation of Asn-linked glycoproteins

N N Aronson Jr et al. Arch Biochem Biophys. .

Abstract

Chitobiase, the lysosomal glycosidase responsible for splitting the GlcNAc beta-D-(1-4)GlcNAc moiety in Asn-linked glycoproteins, was purified over 600-fold from frozen rat livers utilizing an assay with di-N-acetylchitobiose as the substrate. The final preparation showed a major polypeptide of Mr 43,000 (sodium dodecylsulfate-polyacrylamide gel electrophoresis) that was determined to be the chitobiase by an immunological method. The purified chitobiase also hydrolyzed tri- and tetrasaccharides of chitin, which like di-N-acetylchitobiose were not substrates if first reduced by NaBH4. The initial products formed during hydrolysis of the tetrasaccharide were trisaccharide and GlcNAc. These results imply that chitobiase is a "reducing-end exohexosaminidase" which cleaves single GlcNAc units only from the reducing end of oligosaccharides. Fucose, typically found linked to the reducing-end GlcNAc in complex oligosaccharide chains, was found to block this reaction. Additional substrates that were hydrolyzed included GlcNAc beta-D-(1-4)MurNAc, the repeating structure from bacterial cell wall peptidoglycan, and the Man beta-D-(1-4)GlcNAc reducing-end component of glycoproteins. Km and Vm for hydrolysis of these substrates were of similar magnitude as for di-N-acetylchitobiose (6.3 mM and 15 mumol/min/mg protein, respectively). Liver tissues from nin mammalian species were surveyed for the presence of chitobiase activity. The activity was found in rat, mouse, rabbit, and guinea pig liver (Stirling [(1974) FEBS Lett. 39, 171-175] previously observed the enzyme in human liver), but not in dog, sheep, pig, cat, and cow liver. The presence or absence of chitobiase so far observed was found to exactly correlate with the type of oligosaccharide fragments found to accumulate in animals containing genetic or inhibitor-induced lysosomal storage pathologies. The presence of the chitobiase corresponds to the occurrence of one GlcNAc unit at the reducing end of stored oligosaccharides, while the absence of this glycosidase yields fragments with an intact GlcNAc beta-D-(1-4)GlcNAc moiety. These results verify our previous proposal that lysosomal disassembly of glycoproteins to free amino acids and sugars is an ordered, bidirectional pathway in which chitobiase (when present) catalyzes the last step during digestion of the protein-oligosaccharide linkage region.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources