Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan:179:7-23.
doi: 10.1016/j.trsl.2016.07.012. Epub 2016 Jul 25.

High-resolution characterization of the human microbiome

Affiliations
Review

High-resolution characterization of the human microbiome

Cecilia Noecker et al. Transl Res. 2017 Jan.

Abstract

The human microbiome plays an important and increasingly recognized role in human health. Studies of the microbiome typically use targeted sequencing of the 16S rRNA gene, whole metagenome shotgun sequencing, or other meta-omic technologies to characterize the microbiome's composition, activity, and dynamics. Processing, analyzing, and interpreting these data involve numerous computational tools that aim to filter, cluster, annotate, and quantify the obtained data and ultimately provide an accurate and interpretable profile of the microbiome's taxonomy, functional capacity, and behavior. These tools, however, are often limited in resolution and accuracy and may fail to capture many biologically and clinically relevant microbiome features, such as strain-level variation or nuanced functional response to perturbation. Over the past few years, extensive efforts have been invested toward addressing these challenges and developing novel computational methods for accurate and high-resolution characterization of microbiome data. These methods aim to quantify strain-level composition and variation, detect and characterize rare microbiome species, link specific genes to individual taxa, and more accurately characterize the functional capacity and dynamics of the microbiome. These methods and the ability to produce detailed and precise microbiome information are clearly essential for informing microbiome-based personalized therapies. In this review, we survey these methods, highlighting the challenges each method sets out to address and briefly describing methodological approaches.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Schemes of microbiome analysis
Metagenomic data, as well as other meta-omic data, can be processed and analyzed in various ways to address a diverse set of questions concerning the microbiome's composition, capacity, and function.

Similar articles

Cited by

References

    1. Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. - PMC - PubMed
    1. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. - PubMed
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. - PubMed
    1. Cox LM, Yamanishi S, Sohn J, et al. Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences. Cell. 2014;158(4):705–721. - PMC - PubMed
    1. Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339(6119):548–554. - PMC - PubMed

Publication types

Substances