Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 21;45(35):13834-45.
doi: 10.1039/c6dt02251k. Epub 2016 Aug 11.

Structural diversity of halocarbonyl molybdenum and tungsten PNP pincer complexes through ligand modifications

Affiliations

Structural diversity of halocarbonyl molybdenum and tungsten PNP pincer complexes through ligand modifications

Sara R M M de Aguiar et al. Dalton Trans. .

Abstract

This work presents a comparative study of a series of halocarbonyl Mo(ii) and W(ii) complexes of the types [M(PNP)(CO)3X]X and [M(PNP)(CO)2X2] (M = Mo, W; X = I, Br), featuring PNP pincer ligands based on a 2,6-diaminopyridine scaffold. The complexes were prepared and fully characterized. The syntheses of these complexes were accomplished by treatment of [M(PNP)(CO)3] with stoichiometric amounts of I2 and Br2, respectively. The modification of the 2,6-diaminopyridine scaffold by introducing NMe and NPh instead of NH spacers with concomitant modification of the phosphine moieties changed the steric and electronic properties of the PNP ligand significantly. While in the case of NH linkers exclusively cationic seven-coordinate complexes of the type [M(PNP)(CO)3X](+) were obtained with NMe and NPh spacers neutral seven-coordinate complexes of the type [M(PNP)(CO)2X2] were afforded. In the case of the latter, when the reaction is performed in the presence of CO also [M(PNP)(CO)3X](+) complexes are formed which slowly lose CO to give [M(PNP)(CO)2X2]. The halocarbonyl tungsten chemistry parallels that of molybdenum. The only exception is molybdenum in conjunction with the PNP(Me)-iPr ligand, where the coordinatively unsaturated complex [Mo(PNP(Me)-iPr)(CO)X2] is formed. DFT mechanistic studies reveal that the seven-coordinate complexes should be the thermodynamic as well as the kinetic products. Since [Mo(PNP(Me)-iPr)(CO)X2] is the observed product it suggests that the reaction follows an alternative path. Structures of representative complexes were determined by X-ray single crystal analyses.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Oxidative addition of X2 to fac-[ML3(CO)3]z.
Scheme 2
Scheme 2. Structural diversity of halocarbonyl Mo PNP pincer complexes.
Chart 1
Chart 1. PNP ligands used for this study.
Scheme 3
Scheme 3. Synthesis of cationic seven-coordinate halocarbonyl molybdenum and tungsten complexes.
Scheme 4
Scheme 4. Synthesis of neutral seven-coordinate halocarbonyl molybdenum and tungsten complexes.
Scheme 5
Scheme 5. Synthesis of seven and six-coordinate iodocarbonyl molybdenum and tungsten complexes.
Fig. 1
Fig. 1. Structural view of [W(PNPMe-Ph)(CO)2I2] (5a) showing 50% thermal ellipsoids (hydrogen atoms omitted for clarity). Selected bond lengths (Å) and bond angles (°): W1–P1 2.4252(5), W1–P2, 2.4255(5), W1–N1 2.253(1), W1–C32 1.948(2), W1–C33 1.988(2), W1–I1 2.8924(3), W1–I2 2.8958(3), P1–W1–P2 113.69(1), I1–W1–I2 81.15(1), C32–W1–C33 73.46(6).
Fig. 2
Fig. 2. Structural view of [W(PNPMe-Ph)(CO)2Br2]·1.5CH2Cl2 (5b·1.5CH2Cl2) showing 50% thermal ellipsoids (hydrogen atoms and solvent omitted for clarity). Selected bond lengths (Å) and bond angles (°): W1–P1 2.4190(7), W1–P2 2.4203(8), W1–N1 2.240(2), W1–C32 1.953(2), W1–C33 1.984(2), W1–Br1 2.6871(3), W1–Br2 2.6444(3), P1–W1–P2 120.44(2), Br1–W1–Br2 79.43(1), C32–W1–C33 73.44(9).
Fig. 3
Fig. 3. Structural view of [Mo(PNPPh-Et)(CO)2I2]·CDCl3 (6a·CDCl3) showing 50% thermal ellipsoids (hydrogen atoms and solvent omitted for clarity). Selected bond lengths (Å) and bond angles (°): Mo1–P1 2.4384(8), Mo1–P2 2.4385(7), Mo1–C26 2.002(2), Mo1–C27 1.922(2), Mo1–I1 2.9159(5), Mo1–I2 2.9131(5), P1–Mo1–P2 111.98(2), I1–Mo1–I2 82.89(1), C26–Mo1–C27 72.01(10).
Fig. 4
Fig. 4. Structural view of [W(PNPPh-Et)(CO)2I2] (7a) showing 50% thermal ellipsoids (hydrogen atoms omitted for clarity). Selected bond lengths (Å) and bond angles (°): W1–P1 2.4237(8), W1–P2 2.4322(8), W1–C26 1.932(3), W1–C27 1.997(3), W1–I1 2.9013(3), W1–I2 2.8978(3), P1–W1–P2 112.93(3), I1–W1–I2 81.40(1), C26–W1–C27 72.45(12).
Fig. 5
Fig. 5. Structural view of [W(PNPMe-iPr)(CO)2I2] (8a) showing 50% thermal ellipsoids (hydrogen atoms omitted for clarity). Selected bond lengths (Å) and bond angles (°): W1–I1 2.9255(2), W1–I2 2.8999(2), W1–N1 2.2553(18), W1–P1 2.4616(7), W1–P2 2.4594(6), W1–C20 1.940(3), W1–C21 1.982(2), I1–W1–I2 79.855(5), P1–W1–P2 114.97(2), C20–W1–C21 69.54(10).
Scheme 6
Scheme 6. Synthesis of cationic seven coordinate iodocarbonyl molybdenum and tungsten complexes.
Fig. 6
Fig. 6. Structural view of [W(PNPMe-iPr)(CO)3I]I (10) showing 50% thermal ellipsoids (hydrogen atoms omitted for clarity). Selected bond lengths (Å) and bond angles (°): W1–I1 2.8835(14), W1–P1 2.5049(13), W1–P2 2.4945(17), W1–N1 2.244(3), W1–C20 1.991(3), W1–C21 1.982(4), W1–C22 2.021(3), P1–W1–P2 150.32(3).
Scheme 7
Scheme 7. DFT calculated free energies (in kcal mol–1) of bromocarbonyl complexes.
Fig. 7
Fig. 7. Energy profile for the dissociation of CO from [Mo(PNPMe-iPr)(CO)3Br]Br (A) and formation of seven-coordinate [Mo(PNPMe-iPr)(CO)2Br2] (E). The free energy values (kcal mol–1) are referred to A.
Fig. 8
Fig. 8. Energy profile for the formation of six-coordinate [Mo(PNPMe-iPr)(CO)2Br] (J). The free energy values (kcal mol–1) are referred to [Mo(PNPMe-iPr)(CO)3Br]Br (A).

Similar articles

Cited by

References

    1. Dilsky S. J. Organomet. Chem. 2007;692:2887.
    2. Song L.-C., Zhang L.-Y., Hu Q.-M., Huang X.-Y. Inorg. Chim. Acta. 1995;230:127.
    3. Curtis M. D., Shiu K. Inorg. Chem. 1985;24:1213.
    4. Schwarz C. L., Bullock R. M., Creutz C. J. Am. Chem. Soc. 1991;113:1225.
    5. Chaudhuri P., Wieghardt K., Tsai Y. H., Krüger C. Inorg. Chem. 1984;23:427.
    6. Baker K. P. Adv. Organomet. Chem. 1996;40:45.
    7. Edwards P. G., Fleming J. S., Liyanage S. S. Inorg. Chem. 1996;35:4563.
    8. Coles S. J., Edwards P. G., Fleming J. S., Hursthouse M. B. J. Chem. Soc., Dalton Trans. 1995:4091.
    9. Planinic P., Meider H. Polyhedron. 1990;9:1099.
    1. Wingard L. A., White P. S., Templeton J. L. Dalton Trans. 2012;41:11438. - PubMed
    1. Benito-Garagorri D., Becker E., Wiedermann J., Lackner W., Pollak M., Mereiter K., Kisala J., Kirchner K. Organometallics. 2006;25:1900.
    1. Öztopcu Ö., Holzhacker C., Puchberger M., Weil M., Mereiter K., Veiros L. F., Kirchner K. Organometallics. 2013;32:3042. - PMC - PubMed
    1. De Aguiar S. R. M. M., Stöger B., Pittenauer E., Allmaier G., Puchberger M., Veiros L. F., Kirchner K. J. Organomet. Chem. 2014;760:74. - PMC - PubMed

LinkOut - more resources