Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 17;91(4):193-200.
doi: 10.1266/ggs.16-00014. Epub 2016 Aug 12.

Polar patterning of the spikelet is disrupted in the two opposite lemma mutant in rice

Affiliations
Free article

Polar patterning of the spikelet is disrupted in the two opposite lemma mutant in rice

Shige-Hiro Sugiyama et al. Genes Genet Syst. .
Free article

Abstract

Angiosperms produce diverse flowers and the pattern of floral symmetry is a major factor for flower diversification. Bilaterally symmetric flowers have evolved multiple times in different angiosperm lineages from radially symmetric ancestors. Whereas most monocots produce radially symmetric flowers, grasses such as rice (Oryza sativa) and maize (Zea mays) generate bilaterally symmetric flowers and spikelets. In this paper, we focused on the two opposite lemma (tol) mutant, which displays a pleiotropic phenotype in the spikelet. Close morphological examination revealed that a typical spikelet phenotype of the tol mutant was principally based on the mirror image duplication of the lemma-side half of the spikelet. Other spikelet phenotypes can be explained as the derivation from the spikelet with this duplication. A polar pattern of organ formation along the lemma-palea axis was disrupted by this duplication. Accordingly, tol mutation seems to change the spikelet from bilateral symmetry (monosymmetry) to disymmetry. Thus, the tol mutant provides good genetic material to investigate the regulation of spikelet symmetry in rice.

PubMed Disclaimer