Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 24;138(33):10531-8.
doi: 10.1021/jacs.6b05172. Epub 2016 Aug 16.

(BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center

Affiliations

(BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center

Bennett J Eleazer et al. J Am Chem Soc. .

Abstract

The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B-H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B-Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne-carboranyl transformations reported herein represent a new mode of cooperative metal-ligand reactivity of boron-based complexes.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1. Metal Complexes of 1,2-Dehydro-o-carborane ((CC)-Carboryne), 1,3-Dehydro-o-carborane ((BC)-Carboryne), and 2,6-Dehydro-m-carborane ((BB)-Carboryne)
Scheme 1
Scheme 1. Synthesis of (POBBOP)Ru(CO)2 Complex (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) by Double B–H Activation
Figure 1
Figure 1
Displacement ellipsoid plot (50% probability) of the (POBBOP)Ru(CO)2 complex (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) (2). (a) A general view; (b) a view perpendicular to the (B1–B2–Ru1–C2–C3) plane. Atoms belonging to isopropyl groups of the ligand arms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Ru1–B1 = 2.174(3), Ru1–B2 = 2.221(3), B1–B2 = 1.720(4), Ru1–C2 = 1.939(3) Ru1–C3 = 1.915(3), B2–B4 = 1.811(3), B1–B3 = 1.796(3), B4–B7 = 1.781(3), B3–B6 = 1.785(3), B7–B6 = 1.812(4), B2–B1–Ru1 = 68.4(1), B1–B2–Ru1 = 65.5(1), and C2–Ru1–C3 = 98.6(1).
Scheme 2
Scheme 2. Transformation of the (BB)-Carboryne Complex 2 to B-Carboranyl Complexes
Figure 2
Figure 2
Results of theoretical calculations for the (POBBOP)Ru(CO)2 (BB)-carboryne complex (2). (a) The highest occupied molecular orbital (HOMO) and its enlarged region containing (BB)>Ru cycle. (b) The lower energy occupied molecular orbital (HOMO–15) and its enlarged region containing (BB)>Ru cycle. (c) One of the two Pipek–Mezey localized Ru–B bonding orbitals. (d) The contour map of electron density Laplacian in the (B1–B2–Ru1) plane (red curves denote ED depletion, blue curves denote ED concentration; blue dots are bond critical points). (e) The ELF isosurface at the level η = 0.80 shown in two projections; V(Ru,B) basins are shown in green, trisynaptic V(B,B,B) basins are shown in cyan, disynaptic V(C,B) basins are shown in pink, and V(Ru,C) and V(Ru,P) basins are shown in violet. Other basins are omitted for clarity; note that V(Ru,B,B) basin with smaller attractor value (η = 0.67) is not shown at this level.
Figure 3
Figure 3
Displacement ellipsoid plot (50% probability) of the (POB(I)OP)Ru(I) (CO) complex (5). (a) A general view; (b) a view perpendicular to the (B2–B1–Ru1–C2–I1) plane. Atoms belonging to isopropyl groups of the ligand arms have been omitted for clarity. The C6D6 solvent molecule is not shown. Selected bond distances (Å) and angles (deg): Ru1–B1 = 2.059(2), Ru1–I1 = 2.777(1), Ru1···I2 = 2.884(1), B1–B2 = 1.791(3), B2–I2 = 2.156(2), B2–B1–Ru1 = 98.2(1), B1–B2–I2 = 111.8(1), I2···Ru1–C2 = 170.9(1), and B1–Ru1–I1 = 175.2(1).
Figure 4
Figure 4
Displacement ellipsoid plot (50% probability) of the (POB(BH3)OP)Ru(CO)2 complex (7). (a) A general view; (b) a view perpendicular to the (B2–B1–Ru1–C3–C4) plane. Atoms belonging to isopropyl groups of the ligand arms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Ru1–B1 = 2.136(1), Ru1···B11 = 2.700(1), B1–B2 = 1.803(1), B2–B11 = 1.680(1), Ru1···H11A = 1.79(1), B11–H11A = 1.28(1), B11–H11B = 1.09(1), B2–B1–Ru1 = 95.6(1), B1–B2–B11 = 110.8(1), and B1–Ru1–C3 = 176.8(1), and H11A···Ru1–C4 = 174.8(4).

Similar articles

Cited by

References

    1. Selander N.; Szabó K. J. Chem. Rev. 2011, 111, 2048.10.1021/cr1002112. - DOI - PubMed
    2. Choi J.; MacArthur A. H. R.; Brookhart M.; Goldman A. S. Chem. Rev. 2011, 111, 1761.10.1021/cr1003503. - DOI - PubMed
    3. Gunanathan C.; Milstein D. Chem. Rev. 2014, 114, 12024.10.1021/cr5002782. - DOI - PubMed
    4. Adhikary A.; Guan H. ACS Catal. 2015, 5, 6858.10.1021/acscatal.5b01688. - DOI
    1. Gusev D. G.; Lough A. J. Organometallics 2002, 21, 2601.10.1021/om020355m. - DOI
    2. Whited M. T.; Grubbs R. H. Acc. Chem. Res. 2009, 42, 1607.10.1021/ar900103e. - DOI - PubMed
    3. Doyle L. E.; Piers W. E.; Borau-Garcia J. J. Am. Chem. Soc. 2015, 137, 2187.10.1021/ja512602m. - DOI - PubMed
    4. Comanescu C. C.; Iluc V. M. Organometallics 2014, 33, 6059.10.1021/om500682s. - DOI
    5. Liang L. C. Coord. Chem. Rev. 2006, 250, 1152.10.1016/j.ccr.2006.01.001. - DOI
    6. Morgan E.; MacLean D. F.; McDonald R.; Turculet L. J. Am. Chem. Soc. 2009, 131, 14234.10.1021/ja906646v. - DOI - PubMed
    7. Caulton K. G. Eur. J. Inorg. Chem. 2012, 2012, 435.10.1002/ejic.201100623. - DOI
    1. Dang L.; Lin Z.; Marder T. B. Chem. Commun. 2009, 27, 3987.10.1039/b903098k. - DOI - PubMed
    2. Segawa Y.; Yamashita M.; Nozaki K. J. Am. Chem. Soc. 2009, 131, 9201.10.1021/ja9037092. - DOI - PubMed
    3. Chaplin A. B.; Weller A. S. Angew. Chem., Int. Ed. 2010, 49, 581.10.1002/anie.200905185. - DOI - PubMed
    4. Harman W. H.; Peters J. C. J. Am. Chem. Soc. 2012, 134, 5080.10.1021/ja211419t. - DOI - PubMed
    5. Lin T.-P.; Peters J. C. J. Am. Chem. Soc. 2013, 135, 15310.10.1021/ja408397v. - DOI - PubMed
    6. Bontemps S.; Gornitzka H.; Bouhadir G.; Miqueu K.; Bourissou D. Angew. Chem., Int. Ed. 2006, 45, 1611.10.1002/anie.200503649. - DOI - PubMed
    7. Bontemps S.; Bouhadir G.; Gu W.; Mercy M.; Chen C.-H.; Foxman B. M.; Maron L.; Ozerov O. V.; Bourissou D. Angew. Chem., Int. Ed. 2008, 47, 1481.10.1002/anie.200705024. - DOI - PubMed
    8. Braunschweig H.; Dewhurst R. D. Dalton Trans. 2010, 40, 549.10.1039/C0DT01181A. - DOI - PubMed
    9. Braunschweig H.; Dewhurst R. D.; Schneider A. Chem. Rev. 2010, 110, 3924.10.1021/cr900333n. - DOI - PubMed
    10. Shih W.-C.; Gu W.; MacInnis M. C.; Timpa S. D.; Bhuvanesh N.; Zhou J.; Ozerov O. V. J. Am. Chem. Soc. 2016, 138, 2086.10.1021/jacs.5b11706. - DOI - PubMed
    11. Hill A. F.; Lee S. B.; Park J.; Shang R.; Willis A. C. Organometallics 2010, 29, 5661.10.1021/om100557q. - DOI
    12. Hill A. F.; McQueen C. M. A. Organometallics 2014, 33, 1977.10.1021/om5001106. - DOI
    13. Owen G. R. Chem. Soc. Rev. 2012, 41, 3535.10.1039/c2cs15346g. - DOI - PubMed
    14. Owen G. R. Chem. Commun. 2016, 10.1039/C6CC03817D. - DOI - PubMed
    1. Grimes R. N. Dalton Trans. 2015, 44, 5939.10.1039/C5DT00231A. - DOI - PubMed
    2. Popescu A. R.; Teixidor F.; Viñas C. Coord. Chem. Rev. 2014, 269, 54.10.1016/j.ccr.2014.02.016. - DOI
    3. Yinghuai Z.; Hosmane N. S. J. Organomet. Chem. 2013, 747, 25.10.1016/j.jorganchem.2013.03.042. - DOI
    4. Yao Z.-J.; Jin G.-X. Coord. Chem. Rev. 2013, 257, 2522.10.1016/j.ccr.2013.02.004. - DOI
    5. Douvris C.; Michl J. Chem. Rev. 2013, 113, PR179.10.1021/cr400059k. - DOI - PubMed
    6. Yamashita M. Bull. Chem. Soc. Jpn. 2015, 89, 269.10.1246/bcsj.20150355. - DOI
    7. Gleeson B.; Carroll P. J.; Sneddon L. G. J. Am. Chem. Soc. 2013, 135, 12407.10.1021/ja405977q. - DOI - PubMed
    8. Teixidor F.; Flores M. A.; Viñas C.; Sillanpää R.; Kivekäs R. J. Am. Chem. Soc. 2000, 122, 1963.10.1021/ja992970w. - DOI
    9. El-Hellani A.; Kefalidis C. E.; Tham F. S.; Maron L.; Lavallo V. Organometallics 2013, 32, 6887.10.1021/om401001p. - DOI
    10. Spokoyny A. M.; Reuter M. G.; Stern C. L.; Ratner M. A.; Seideman T.; Mirkin C. A. J. Am. Chem. Soc. 2009, 131, 9482.10.1021/ja902526k. - DOI - PMC - PubMed
    11. Kirchmann M.; Wesemann L. Dalton Trans. 2008, 4, 444.10.1039/B715305H. - DOI - PubMed
    12. Himmelspach A.; Finze M.; Raub S. Angew. Chem., Int. Ed. 2011, 50, 2628.10.1002/anie.201007239. - DOI - PubMed
    13. El-Zaria M. E.; Arii H.; Nakamura H. Inorg. Chem. 2011, 50, 4149.10.1021/ic2002095. - DOI - PubMed
    14. Lavallo V.; Wright J. H.; Tham F. S.; Quinlivan S. Angew. Chem., Int. Ed. 2013, 52, 3172.10.1002/anie.201209107. - DOI - PubMed
    15. Tsang M. Y.; Viñas C.; Teixidor F.; Planas J. G.; Conde N.; SanMartin R.; Herrero M. T.; Domínguez E.; Lledós A.; Vidossich P.; Choquesillo-Lazarte D. Inorg. Chem. 2014, 53, 9284.10.1021/ic5013999. - DOI - PubMed
    16. Eleazer B. J.; Smith M. D.; Peryshkov D. V. Organometallics 2016, 35, 106.10.1021/acs.organomet.5b00807. - DOI
    17. Spokoyny A. M. Pure Appl. Chem. 2013, 85, 903.10.1351/PAC-CON-13-01-13. - DOI - PMC - PubMed
    1. For selected recent examples and reviews, see:

    2. Núñez R.; Romero I.; Teixidor F.; Viñas C. Chem. Soc. Rev. 2016, 10.1039/C6CS00159A. - DOI - PubMed
    3. Wee K.-R.; Cho Y.-J.; Jeong S.; Kwon S.; Lee J.-D.; Suh I.-H.; Kang S. O. J. Am. Chem. Soc. 2012, 134, 17982.10.1021/ja3066623. - DOI - PubMed
    4. Koshino M.; Tanaka T.; Solin N.; Suenaga K.; Isobe H.; Nakamura E. Science 2007, 316, 853.10.1126/science.1138690. - DOI - PubMed
    5. Schwartz J. J.; Mendoza M. A.; Wattanatorn N.; Zhao Y.; Nguyen V. T.; Spokoyny A. M.; Mirkin C. A.; Baše T.; Weiss P. S. J. Am. Chem. Soc. 2016, 138, 5957.10.1021/jacs.6b02026. - DOI - PubMed
    6. Kirlikovali K. O.; Axtell J. A.; Gonzalez A.; Phung A. C.; Khan S. I.; Spokoyny A. M. Chem. Sci. 2016, 7, 5132.10.1039/C6SC01146B. - DOI - PMC - PubMed
    7. Tutusaus O.; Mohtadi R.; Arthur T. S.; Mizuno F.; Nelson E. G.; Sevryugina Y. V. Angew. Chem., Int. Ed. 2015, 54, 7900.10.1002/anie.201412202. - DOI - PubMed
    8. Scholz M.; Hey-Hawkins E. Chem. Rev. 2011, 111, 7035.10.1021/cr200038x. - DOI - PubMed
    9. McArthur S. G.; Geng L.; Guo J.; Lavallo V. Inorg. Chem. Front. 2015, 2, 1101.10.1039/C5QI00171D. - DOI
    10. Kracke G. R.; VanGordon M. R.; Sevryugina Y. V.; Kueffer P. J.; Kabytaev K.; Jalisatgi S. S.; Hawthorne M. F. ChemMedChem 2015, 10, 62.10.1002/cmdc.201402369. - DOI - PubMed
    11. Kaszynski P. Collect. Czech. Chem. Commun. 1999, 64, 895.10.1135/cccc19990895. - DOI
    12. Dash B. P.; Satapathy R.; Maguire J. A.; Hosmane N. S. New J. Chem. 2011, 35, 1955.10.1039/c1nj20228f. - DOI

Publication types