Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments
- PMID: 27529188
- PMCID: PMC5012862
- DOI: 10.7554/eLife.18972
Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments
Abstract
Ferritins are ubiquitous proteins that oxidise and store iron within a protein shell to protect cells from oxidative damage. We have characterized the structure and function of a new member of the ferritin superfamily that is sequestered within an encapsulin capsid. We show that this encapsulated ferritin (EncFtn) has two main alpha helices, which assemble in a metal dependent manner to form a ferroxidase center at a dimer interface. EncFtn adopts an open decameric structure that is topologically distinct from other ferritins. While EncFtn acts as a ferroxidase, it cannot mineralize iron. Conversely, the encapsulin shell associates with iron, but is not enzymatically active, and we demonstrate that EncFtn must be housed within the encapsulin for iron storage. This encapsulin nanocompartment is widely distributed in bacteria and archaea and represents a distinct class of iron storage system, where the oxidation and mineralization of iron are distributed between two proteins.
Keywords: Rhodospirillum rubrum; biochemistry; biophysics; encapsulated ferritin; encapsulin; ferritin; structural biology.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures




























Similar articles
-
Dissecting the structural and functional roles of a putative metal entry site in encapsulated ferritins.J Biol Chem. 2020 Nov 13;295(46):15511-15526. doi: 10.1074/jbc.RA120.014502. Epub 2020 Sep 2. J Biol Chem. 2020. PMID: 32878987 Free PMC article.
-
Conservation of the structural and functional architecture of encapsulated ferritins in bacteria and archaea.Biochem J. 2019 Mar 22;476(6):975-989. doi: 10.1042/BCJ20180922. Biochem J. 2019. PMID: 30837306
-
Mass spectrometry reveals the assembly pathway of encapsulated ferritins and highlights a dynamic ferroxidase interface.Chem Commun (Camb). 2020 Mar 21;56(23):3417-3420. doi: 10.1039/c9cc08130e. Epub 2020 Feb 24. Chem Commun (Camb). 2020. PMID: 32090213
-
Ferritin, cellular iron storage and regulation.IUBMB Life. 2017 Jun;69(6):414-422. doi: 10.1002/iub.1621. Epub 2017 Mar 27. IUBMB Life. 2017. PMID: 28349628 Review.
-
Mineralization in ferritin: an efficient means of iron storage.J Struct Biol. 1999 Jun 30;126(3):182-94. doi: 10.1006/jsbi.1999.4118. J Struct Biol. 1999. PMID: 10441528 Review.
Cited by
-
Linocin M18 protein from the insect pathogenic bacterium Brevibacillus laterosporus isolates.Appl Microbiol Biotechnol. 2023 Jul;107(13):4337-4353. doi: 10.1007/s00253-023-12563-8. Epub 2023 May 19. Appl Microbiol Biotechnol. 2023. PMID: 37204448 Free PMC article.
-
A two-component quasi-icosahedral protein nanocompartment with variable shell composition and irregular tiling.bioRxiv [Preprint]. 2024 Apr 26:2024.04.25.591138. doi: 10.1101/2024.04.25.591138. bioRxiv. 2024. Update in: Adv Sci (Weinh). 2025 Aug;12(32):e03617. doi: 10.1002/advs.202503617. PMID: 38712103 Free PMC article. Updated. Preprint.
-
Bacterial Organelles in Iron Physiology.Mol Microbiol. 2024 Dec;122(6):914-928. doi: 10.1111/mmi.15330. Epub 2024 Nov 15. Mol Microbiol. 2024. PMID: 39545931 Free PMC article. Review.
-
Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment.Sci Adv. 2022 Jan 28;8(4):eabj4461. doi: 10.1126/sciadv.abj4461. Epub 2022 Jan 26. Sci Adv. 2022. PMID: 35080974 Free PMC article.
-
The emerging mechanisms and functions of microautophagy.Nat Rev Mol Cell Biol. 2023 Mar;24(3):186-203. doi: 10.1038/s41580-022-00529-z. Epub 2022 Sep 12. Nat Rev Mol Cell Biol. 2023. PMID: 36097284 Review.
References
-
- Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography. 2010;66:213–221. doi: 10.1107/S0907444909052925. - DOI - PMC - PubMed
-
- Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica Section D Biological Crystallography. 2012;68:352–367. doi: 10.1107/S0907444912001308. - DOI - PMC - PubMed
-
- Akita F, Chong KT, Tanaka H, Yamashita E, Miyazaki N, Nakaishi Y, Suzuki M, Namba K, Ono Y, Tsukihara T, Nakagawa A. The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses. Journal of Molecular Biology. 2007;368:1469–1483. doi: 10.1016/j.jmb.2007.02.075. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical