Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres
- PMID: 27530342
- DOI: 10.1007/s00412-016-0612-7
Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres
Abstract
The centromere is the chromosomal site of kinetochore assembly and is responsible for the correct chromosome segregation during mitosis and meiosis in eukaryotes. Contrary to monocentrics, holocentric chromosomes lack a primary constriction, what is attributed to a kinetochore activity along almost the entire chromosome length during mitosis. This extended centromere structure imposes a problem during meiosis, since sister holocentromeres are not co-oriented during first meiotic division. Thus, regardless of the relatively conserved somatic chromosome structure of holocentrics, during meiosis holocentric chromosomes show different adaptations to deal with this condition. Recent findings in holocentrics have brought back the discussion of the great centromere plasticity of eukaryotes, from the typical CENH3-based holocentromeres to CENH3-less holocentric organisms. Here, we summarize recent and former findings about centromere/kinetochore adaptations shown by holocentric organisms during mitosis and meiosis and discuss how these adaptations are related to the type of meiosis found.
Keywords: CENH3; Centromere plasticity; Holocentromere; Meiosis; Mitosis.
Similar articles
-
Restructuring of Holocentric Centromeres During Meiosis in the Plant Rhynchospora pubera.Genetics. 2016 Oct;204(2):555-568. doi: 10.1534/genetics.116.191213. Epub 2016 Aug 3. Genetics. 2016. PMID: 27489000 Free PMC article.
-
Evolution of holocentric chromosomes: Drivers, diversity, and deterrents.Semin Cell Dev Biol. 2022 Jul;127:90-99. doi: 10.1016/j.semcdb.2022.01.003. Epub 2022 Jan 11. Semin Cell Dev Biol. 2022. PMID: 35031207 Review.
-
HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes.J Cell Biol. 2001 Jun 11;153(6):1227-38. doi: 10.1083/jcb.153.6.1227. J Cell Biol. 2001. PMID: 11402066 Free PMC article.
-
Atypical centromeres in plants-what they can tell us.Front Plant Sci. 2015 Oct 26;6:913. doi: 10.3389/fpls.2015.00913. eCollection 2015. Front Plant Sci. 2015. PMID: 26579160 Free PMC article. Review.
-
Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans.Essays Biochem. 2020 Sep 4;64(2):233-249. doi: 10.1042/EBC20190067. Essays Biochem. 2020. PMID: 32756873 Review.
Cited by
-
Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture.Int J Mol Sci. 2020 May 15;21(10):3488. doi: 10.3390/ijms21103488. Int J Mol Sci. 2020. PMID: 32429054 Free PMC article. Review.
-
Analysis of the small chromosomal Prionium serratum (Cyperid) demonstrates the importance of reliable methods to differentiate between mono- and holocentricity.Chromosoma. 2020 Dec;129(3-4):285-297. doi: 10.1007/s00412-020-00745-6. Epub 2020 Nov 9. Chromosoma. 2020. PMID: 33165742 Free PMC article.
-
Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids.Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9610-E9619. doi: 10.1073/pnas.1802610115. Epub 2018 Sep 28. Proc Natl Acad Sci U S A. 2018. PMID: 30266792 Free PMC article.
-
Rewiring Meiosis for Crop Improvement.Front Plant Sci. 2021 Jul 19;12:708948. doi: 10.3389/fpls.2021.708948. eCollection 2021. Front Plant Sci. 2021. PMID: 34349775 Free PMC article. Review.
-
Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae).BMC Genet. 2017 Apr 17;18(1):35. doi: 10.1186/s12863-017-0494-6. BMC Genet. 2017. PMID: 28412934 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources