Reversal of Phospholamban Inhibition of the Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA) Using Short, Protein-interacting RNAs and Oligonucleotide Analogs
- PMID: 27531746
- PMCID: PMC5076822
- DOI: 10.1074/jbc.M116.738807
Reversal of Phospholamban Inhibition of the Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA) Using Short, Protein-interacting RNAs and Oligonucleotide Analogs
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLN) complex regulates heart relaxation through its removal of cytosolic Ca2+ during diastole. Dysfunction of this complex has been related to many heart disorders and is therefore a key pharmacological target. There are currently no therapeutics that directly target either SERCA or PLN. It has been previously reported that single-stranded DNA binds PLN with strong affinity and relieves inhibition of SERCA in a length-dependent manner. In the current article, we demonstrate that RNAs and single-stranded oligonucleotide analogs, or xeno nucleic acids (XNAs), also bind PLN strongly (Kd <10 nm) and relieve inhibition of SERCA. Affinity for PLN is sequence-independent. Relief of PLN inhibition is length-dependent, allowing SERCA activity to be restored incrementally. The improved in vivo stability of XNAs offers more realistic pharmacological potential than DNA or RNA. We also found that microRNAs (miRNAs) 1 and 21 bind PLN strongly and relieve PLN inhibition of SERCA to a greater extent than a similar length random sequence RNA mixture. This may suggest that miR-1 and miR-21 have evolved to contain distinct sequence elements that are more effective at relieving PLN inhibition than random sequences.
Keywords: Phospholamban (PLN); RNA-protein interaction; calcium ATPase (SERCA); cardiomyopathy; fluorescence anisotropy; microRNA (miRNA); oligonucleotide analogs; protein complex; protein-nucleic acid interaction; structure-function.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures






Similar articles
-
Rheostatic Regulation of the SERCA/Phospholamban Membrane Protein Complex Using Non-Coding RNA and Single-Stranded DNA oligonucleotides.Sci Rep. 2015 Aug 21;5:13000. doi: 10.1038/srep13000. Sci Rep. 2015. PMID: 26292938 Free PMC article.
-
Pathological mutations in the phospholamban cytoplasmic region affect its topology and dynamics modulating the extent of SERCA inhibition.Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184370. doi: 10.1016/j.bbamem.2024.184370. Epub 2024 Jul 8. Biochim Biophys Acta Biomembr. 2024. PMID: 38986894
-
Sarco(endo)plasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail.J Biol Chem. 2013 Mar 22;288(12):8456-8467. doi: 10.1074/jbc.M112.446161. Epub 2013 Jan 29. J Biol Chem. 2013. PMID: 23362265 Free PMC article.
-
The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA).Can J Physiol Pharmacol. 2015 Oct;93(10):843-54. doi: 10.1139/cjpp-2014-0463. Epub 2015 Jan 19. Can J Physiol Pharmacol. 2015. PMID: 25730320 Review.
-
Interaction sites among phospholamban, sarcolipin, and the sarco(endo)plasmic reticulum Ca(2+)-ATPase.Biochem Biophys Res Commun. 2008 Apr 25;369(1):188-94. doi: 10.1016/j.bbrc.2007.11.098. Epub 2007 Nov 29. Biochem Biophys Res Commun. 2008. PMID: 18053795 Review.
Cited by
-
Viral expression of a SERCA2a-activating PLB mutant improves calcium cycling and synchronicity in dilated cardiomyopathic hiPSC-CMs.J Mol Cell Cardiol. 2020 Jan;138:59-65. doi: 10.1016/j.yjmcc.2019.11.147. Epub 2019 Nov 18. J Mol Cell Cardiol. 2020. PMID: 31751570 Free PMC article.
-
Cytoplasmic nucleic acid-based XNAs directly enhance live cardiac cell function by a Ca2+ cycling-independent mechanism via the sarcomere.J Mol Cell Cardiol. 2019 May;130:1-9. doi: 10.1016/j.yjmcc.2019.02.016. Epub 2019 Mar 5. J Mol Cell Cardiol. 2019. PMID: 30849419 Free PMC article.
-
[Lowered sarcoendoplasmic reticulum calcium uptake and diaphragmatic SERCA1 expression contribute to diaphragmatic contractile and relaxation dysfunction in septic rats].Nan Fang Yi Ke Da Xue Xue Bao. 2016 Apr 20;37(4):438-443. doi: 10.3969/j.issn.1673-4254.2017.04.03. Nan Fang Yi Ke Da Xue Xue Bao. 2016. PMID: 28446393 Free PMC article. Chinese.
-
Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling.Sci Rep. 2017 Jun 8;7(1):3093. doi: 10.1038/s41598-017-03234-6. Sci Rep. 2017. PMID: 28596578 Free PMC article.
-
Non and Epigenetic Mechanisms in Regulation of Adaptive Thermogenesis in Skeletal Muscle.Front Endocrinol (Lausanne). 2019 Aug 13;10:517. doi: 10.3389/fendo.2019.00517. eCollection 2019. Front Endocrinol (Lausanne). 2019. PMID: 31456746 Free PMC article. No abstract available.
References
-
- Bers D. M. (2002) Cardiac excitation-contraction coupling. Nature 415, 198–205 - PubMed
-
- Bers D. M. (2008) Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 70, 23–49 - PubMed
-
- Kranias E. G., and Bers D. M. (2007) Calcium and cardiomyopathies. in Calcium Signalling and Disease (Carafoli E., and Brini M. eds), pp. 523–537, Springer Netherlands, Dordrecht
-
- Heidenreich P. A., Trogdon J. G., Khavjou O. A., Butler J., Dracup K., Ezekowitz M. D., Finkelstein E. A., Hong Y., Johnston S. C., Khera A., Lloyd-Jones D. M., Nelson S. A., Nichol G., Orenstein D., Wilson P. W. F., Woo Y. J., et al. (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933–944 - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous