Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov;139(3):369-380.
doi: 10.1111/jnc.13773. Epub 2016 Sep 15.

HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner

Affiliations
Free article

HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner

Dawn X P Koh et al. J Neurochem. 2016 Nov.
Free article

Abstract

During early postnatal development, neuronal circuits are sculpted by sensory experience provided by the external environment. This experience-dependent regulation of circuitry development consolidates the balance of excitatory-inhibitory (E/I) neurons in the brain. The cortical barrel-column that innervates a single principal whisker is used to provide a clear reference frame for studying the consolidation of E/I circuitry. Sensory deprivation of S1 at birth disrupts the consolidation of excitatory-inhibitory balance by decreasing inhibitory transmission of parvalbumin interneurons. The molecular mechanisms underlying this decrease in inhibition are not completely understood. Our findings show that epigenetic mechanisms, in particular histone deacetylation by histone deacetylases, negatively regulate the expression of brain-derived neurotrophic factor (Bdnf) and parvalbumin (Pvalb) genes during development, which are required for the maturation of parvalbumin interneurons. After whisker deprivation, increased histone deacetylase 1 expression and activity led to increased histone deacetylase 1 binding and decreased histone acetylation at Bdnf promoters I-IV and Pvalb promoter, resulting in the repression of Bdnf and Pvalb gene transcription. The decrease in Bdnf expression further affected parvalbumin interneuron maturation at layer II/III in S1, demonstrated by decreased parvalbumin expression, a marker for parvalbumin interneuron maturation. Knockdown of HDAC1 recovered Bdnf and Pvalb gene transcription and also prevented the decrease of inhibitory synapses accompanying whisker deprivation.

Keywords: deprivation; development; epigenetics; inhibitory; somatosensory; whisker.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources