Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov 17;17(22):2103-2114.
doi: 10.1002/cbic.201600357. Epub 2016 Sep 21.

Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery

Affiliations
Review

Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery

Regina Bilan et al. Chembiochem. .

Abstract

Quantum dots (QDs) are highly fluorescent nanocrystals with advanced photophysical and spectral properties: high brightness and stability against photobleaching accompanied by broad excitation and narrow emission spectra. Water-soluble QDs functionalized with biomolecules, such as proteins, peptides, antibodies, and drugs, are used for biomedical applications. The advantages of QD-based approaches to immuno-histochemical analysis, single-molecule tracking, and in vivo imaging (over traditional methods with organic dyes and fluorescent proteins) are explained. The unique spectral properties of QDs offer opportunities for designing systems for multiplexed analysis by multicolor imaging for the simultaneous detection of multiple targets. Conjugation of drug molecules with QDs or their incorporation into QD-based drug-delivery particles makes it possible to monitor real-time drug tracking and carry out image-guided therapy. Because of the tunability of their photophysical properties, QDs emitting in the near-infrared have become an attractive tool for deep-tissue mono- and multiphoton in vivo imaging. We review recent achievements in QD applications for bioimaging, targeting, and drug delivery, as well as challenges related to their toxicity and non-biodegradability. Key and perspectives for further development of advanced QD-based nanotools are addressed.

Keywords: bioconjugates; bioimaging; drug delivery; fluorescent nanocrystals; nanotechnology; quantum dots.

PubMed Disclaimer

LinkOut - more resources