Human-like compliant locomotion: state of the art of robotic implementations
- PMID: 27545108
- DOI: 10.1088/1748-3190/11/5/051002
Human-like compliant locomotion: state of the art of robotic implementations
Abstract
This review paper provides a synthetic yet critical overview of the key biomechanical principles of human bipedal walking and their current implementation in robotic platforms. We describe the functional role of human joints, addressing in particular the relevance of the compliant properties of the different degrees of freedom throughout the gait cycle. We focused on three basic functional units involved in locomotion, i.e. the ankle-foot complex, the knee, and the hip-pelvis complex, and their relevance to whole-body performance. We present an extensive review of the current implementations of these mechanisms into robotic platforms, discussing their potentialities and limitations from the functional and energetic perspectives. We specifically targeted humanoid robots, but also revised evidence from the field of lower-limb prosthetics, which presents innovative solutions still unexploited in the current humanoids. Finally, we identified the main critical aspects of the process of translating human principles into actual machines, providing a number of relevant challenges that should be addressed in future research.
Similar articles
-
Normal human locomotion.Prosthet Orthot Int. 1979 Apr;3(1):4-12. doi: 10.3109/03093647909164693. Prosthet Orthot Int. 1979. PMID: 471705
-
Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.Prosthet Orthot Int. 2014 Feb;38(1):39-45. doi: 10.1177/0309364613486917. Epub 2013 May 9. Prosthet Orthot Int. 2014. PMID: 23660383 Clinical Trial.
-
Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.Sensors (Basel). 2022 Jun 12;22(12):4440. doi: 10.3390/s22124440. Sensors (Basel). 2022. PMID: 35746222 Free PMC article. Review.
-
Contributions to the understanding of gait control.Dan Med J. 2014 Apr;61(4):B4823. Dan Med J. 2014. PMID: 24814597 Review.
-
Robots in human biomechanics--a study on ankle push-off in walking.Bioinspir Biomim. 2012 Sep;7(3):036005. doi: 10.1088/1748-3182/7/3/036005. Epub 2012 Apr 17. Bioinspir Biomim. 2012. PMID: 22510333
Cited by
-
Stability of Mina v2 for Robot-Assisted Balance and Locomotion.Front Neurorobot. 2018 Oct 15;12:62. doi: 10.3389/fnbot.2018.00062. eCollection 2018. Front Neurorobot. 2018. PMID: 30374298 Free PMC article.
-
Real-Time Foot Tracking and Gait Evaluation with Geometric Modeling.Sensors (Basel). 2022 Feb 20;22(4):1661. doi: 10.3390/s22041661. Sensors (Basel). 2022. PMID: 35214563 Free PMC article.
-
Advances in neuroprosthetic management of foot drop: a review.J Neuroeng Rehabil. 2020 Mar 25;17(1):46. doi: 10.1186/s12984-020-00668-4. J Neuroeng Rehabil. 2020. PMID: 32213196 Free PMC article. Review.
-
The individuality of plantar pressure indices enables the reduction of descriptive gait data required for diagnostic purposes.Sci Rep. 2025 Aug 26;15(1):31438. doi: 10.1038/s41598-025-16428-0. Sci Rep. 2025. PMID: 40858783 Free PMC article.
-
A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot.Front Neurorobot. 2019 May 17;13:20. doi: 10.3389/fnbot.2019.00020. eCollection 2019. Front Neurorobot. 2019. PMID: 31156418 Free PMC article.