Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 23:7:12460.
doi: 10.1038/ncomms12460.

Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

Solveig K Sieberts  1 Fan Zhu  2 Javier García-García  3 Eli Stahl  4   5 Abhishek Pratap  1 Gaurav Pandey  5   6 Dimitrios Pappas  7   8 Daniel Aguilar  3 Bernat Anton  3 Jaume Bonet  3 Ridvan Eksi  2 Oriol Fornés  3 Emre Guney  9 Hongdong Li  2 Manuel Alejandro Marín  3 Bharat Panwar  2 Joan Planas-Iglesias  3 Daniel Poglayen  3 Jing Cui  10 Andre O Falcao  11 Christine Suver  1 Bruce Hoff  1 Venkat S K Balagurusamy  12 Donna Dillenberger  12 Elias Chaibub Neto  1 Thea Norman  1 Tero Aittokallio  12 Muhammad Ammad-Ud-Din  13   14 Chloe-Agathe Azencott  15   16   17 Víctor Bellón  15   16   17 Valentina Boeva  15   16   17 Kerstin Bunte  13   14 Himanshu Chheda  18 Lu Cheng  18   13   14 Jukka Corander  14   19 Michel Dumontier  20 Anna Goldenberg  21   22 Peddinti Gopalacharyulu  18 Mohsen Hajiloo  22 Daniel Hidru  21   22 Alok Jaiswal  18 Samuel Kaski  13   14   23 Beyrem Khalfaoui  22 Suleiman Ali Khan  18   13   14 Eric R Kramer  24 Pekka Marttinen  13   14 Aziz M Mezlini  21   22 Bhuvan Molparia  24 Matti Pirinen  18 Janna Saarela  18 Matthias Samwald  25 Véronique Stoven  15   16   17 Hao Tang  26 Jing Tang  18 Ali Torkamani  24 Jean-Phillipe Vert  15   16   17 Bo Wang  26 Tao Wang  26 Krister Wennerberg  18 Nathan E Wineinger  24 Guanghua Xiao  26 Yang Xie  26   27 Rae Yeung  28   29 Xiaowei Zhan  26   30 Cheng Zhao  21   22 Members of the Rheumatoid Arthritis Challenge ConsortiumJeff Greenberg  1   31 Joel Kremer  32 Kaleb Michaud  33   34 Anne Barton  35   36 Marieke Coenen  37 Xavier Mariette  38   39 Corinne Miceli  38   39 Nancy Shadick  10 Michael Weinblatt  10 Niek de Vries  40 Paul P Tak  40   41   42   43 Danielle Gerlag  40   44 Tom W J Huizinga  45 Fina Kurreeman  45 Cornelia F Allaart  46 S Louis Bridges Jr  47 Lindsey Criswell  48 Larry Moreland  49 Lars Klareskog  50 Saedis Saevarsdottir  50 Leonid Padyukov  50 Peter K Gregersen  51 Stephen Friend  1 Robert Plenge  46 Gustavo Stolovitzky  5   6   11 Baldo Oliva  3 Yuanfang Guan  2 Lara M Mangravite  1
Collaborators, Affiliations

Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

Solveig K Sieberts et al. Nat Commun. .

Erratum in

  • Erratum: Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis.
    Sieberts SK, Zhu F, García-García J, Stahl E, Pratap A, Pandey G, Pappas D, Aguilar D, Anton B, Bonet J, Eksi R, Fornés O, Guney E, Li H, Marín MA, Panwar B, Planas-Iglesias J, Poglayen D, Cui J, Falcao AO, Suver C, Hoff B, Balagurusamy VSK, Dillenberger D, Neto EC, Norman T, Aittokallio T, Ammad-Ud-Din M, Azencott CA, Bellón V, Boeva V, Bunte K, Chheda H, Cheng L, Corander J, Dumontier M, Goldenberg A, Gopalacharyulu P, Hajiloo M, Hidru D, Jaiswal A, Kaski S, Khalfaoui B, Khan SA, Kramer ER, Marttinen P, Mezlini AM, Molparia B, Pirinen M, Saarela J, Samwald M, Stoven V, Tang H, Tang J, Torkamani A, Vert JP, Wang B, Wang T, Wennerberg K, Wineinger NE, Xiao G, Xie Y, Yeung R, Zhan X, Zhao C; Members of the Rheumatoid Arthritis Challenge Consortium; Greenberg J, Kremer J, Michaud K, Barton A, Coenen M, Mariette X, Miceli C, Shadick N, Weinblatt M, de Vries N, Tak PP, Gerlag D, Huizinga TWJ, Kurreeman F, Allaart CF, Bridges SL Jr, Criswell L, Moreland L, Klareskog L, Saevarsdottir S, Padyukov L, Gregersen PK, Friend S, Plenge R, Stolovitzky G, Oliva B, Guan Y, Mangravite LM. Sieberts SK, et al. Nat Commun. 2016 Oct 10;7:13205. doi: 10.1038/ncomms13205. Nat Commun. 2016. PMID: 27721464 Free PMC article. No abstract available.

Abstract

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Challenge schematic.
(a) This analysis was performed in two phases. In the Competitive phase, an open competition was performed to formally evaluate and identify the best models in the world to address this research question. In all, 73 teams representing 242 registered participants joined the challenge. Organizers evaluated model performance for test set predictions submitted by 17 teams. The 8 best-performing teams were invited to join the collaborative phase. In this phase, a collectively designed experiment was developed, in which each team independently performed analyses and challenge organizers performed a combined analysis. (b) Two data sets were used in the analysis: the Discovery cohort and the CORRONA CERTAIN study. Participants were provided with 2.5M imputed SNP genotypes+5 covariates from two cohorts and with the response trait for 2,031 individuals in the Discovery cohort (‘Training Set'). At the completion of the 16-week training period, participants were required to submit a final submission containing predictions of response traits in a completely independent data set, the CORRONA CERTAIN study (‘Validation Test Set').
Figure 2
Figure 2. Model performance.
Competitive Phase: (a) Bootstrap distributions for each of the 27 models submitted to the classification subchallenge ordered by overall rank. The top 11 models were significantly better than random at Bonferroni-corrected P value<0.05. Collaborative Phase: (b) Distributions of the models built with randomly sampled SNPs, by team, along with scores for their full model, containing data-driven SNP, as well as clinical variable selection, (pink) and clinical model, which contains clinical variables but excludes SNP data (blue). For 5 of 7 teams, the full models are nominally significantly better relative to the random SNP models for AUPR, AUROC or both (enrichment P value 4.2e−5). (c) AUPR and AUROC of each collaborative phase team's full model, containing SNP and clinical predictors, versus their clinical model, which does not consider SNP predictors. There was no significant difference in either metric between models developed in the presence or absence of genetic information (paired t-test P value=0.85, 0.82, for AUPR and AUROC, respectively).

References

    1. Gibofsky A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am. J. Manag. Care 18, S295–S302 (2012). - PubMed
    1. McInnes I. B. & Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011). - PubMed
    1. Vincent F. B. et al. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann. Rheum. Dis. 72, 165–178 (2013). - PubMed
    1. Wijbrandts C. A. et al. The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor alpha expression in the synovium. Ann. Rheum. Dis. 67, 1139–1144 (2008). - PMC - PubMed
    1. Tak P. P. A personalized medicine approach to biologic treatment of rheumatoid arthritis: a preliminary treatment algorithm. Rheumatology 51, 600–609 (2012). - PMC - PubMed

Publication types

MeSH terms