Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;22(37):5698-5717.
doi: 10.2174/1381612822666160822150243.

Targeting Mitochondria in Cardiovascular Diseases

Affiliations
Review

Targeting Mitochondria in Cardiovascular Diseases

Filomena S G Silva et al. Curr Pharm Des. 2016.

Abstract

Background: Cardiovascular diseases (CVDs) are one of the main factors responsible for human morbidity and mortality. Since mitochondria play a critical role in the regulation of cardiac tissue homeostasis, this organelle is a critical target for the protective effects of several pharmaceuticals. Although specific mitochondria-targeted antioxidants and some pharmacological agents are described as potential cardioprotective agents, there are still a few effective mitochondrial therapies for the treatment of CVDs. Agents which have potential cardioprotective effects by directly targeting mitochondria in vitro and in vivo are still in pre-clinical or clinical trials, hence their widespread use in the clinic is still far. Also, some of these agents have a decreased bioavailability or show some intrinsic toxicity, which also limits their working mitochondrial concentrations.

Methods: By initially using PubMed specific queries for literature search, we review here cardiac mitochondrial effects of specific targeted and non-targeted antioxidants and pharmacological agents, including MitoE, MitoQ, MitoSNO, Mito-TEMPOL, SkQ1, SkQR1, carvedilol, trimetazidine, ranolazine, diazoxide and propofol.

Results: The present review emphasizes new mitochondrial-targeting strategies which have emerged to address difficulties arising from current approaches. We also describe the strengths and weaknesses of these cardioprotective approaches.

Conclusion: Although effective therapies to target mitochondria in the context of CVDs are not under widespread clinical use, the new strategies proposed constitute a real promise for the development of therapies which may effectively prevent CVDs in the near future.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources