Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 22;15(1):424.
doi: 10.1186/s12936-016-1483-3.

Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon

Affiliations

Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon

Christophe Antonio-Nkondjio et al. Malar J. .

Abstract

Background: Resistance to the carbamate insecticide bendiocarb is emerging in Anopheles gambiae populations from the city of Yaoundé in Cameroon. However, the molecular basis of this resistance remains uncharacterized. The present study objective is to investigate mechanisms promoting resistance to bendiocarb in An. gambiae populations from Yaoundé.

Methods: The level of susceptibility of An. gambiae s.l. to bendiocarb 0.1 % was assessed from 2010 to 2013 using bioassays. Mosquitoes resistant to bendiocarb, unexposed and susceptible mosquitoes were screened for the presence of the Ace-1(R) mutation using TaqMan assays. Microarray analyses were performed to assess the pattern of genes differentially expressed between resistant, unexposed and susceptible.

Results: Bendiocarb resistance was more prevalent in mosquitoes originating from cultivated sites compared to those from polluted and unpolluted sites. Both An. gambiae and Anopheles coluzzii were found to display resistance to bendiocarb. No G119S mutation was detected suggesting that resistance was mainly metabolic. Microarray analysis revealed the over-expression of several cytochrome P450 s genes including cyp6z3, cyp6z1, cyp12f2, cyp6m3 and cyp6p4. Gene ontology (GO) enrichment analysis supported the detoxification role of cytochrome P450 s with several GO terms associated with P450 activity significantly enriched in resistant samples. Other detoxification genes included UDP-glucosyl transferases, glutathione-S transferases and ABC transporters.

Conclusion: The study highlights the probable implication of metabolic mechanisms in bendiocarb resistance in An. gambiae populations from Yaoundé and stresses the need for further studies leading to functional validation of detoxification genes involved in this resistance.

Keywords: Anopheles gambiae; Bendiocarb resistance; Cameroon; P450 monooxygenase; Yaoundé; metabolic resistance.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Monthly variation of mosquitoes originating from different breeding habitats susceptibility to bendiocarb in Yaoundé from October 2010 to December 2013; bars with standard error
Fig. 2
Fig. 2
Differentially transcribed genes between resistant, unexposed and susceptible. The Venn diagram presents genes with a transcription ratio ≥twofold in either direction and a corrected p value <0.05 in bendiocarb resistant samples compared to unexposed and the Kisumu laboratory strain. Transcripts number are presented for each portion of the Venn diagram
Fig. 3
Fig. 3
Validation of microarray data by RT-PCR analysis: correlation between microarray data and RT-PCR for nine candidate genes

References

    1. WHO . Malaria vector control and personal protection. WHO Technical Report Series 936. Geneva: World Health Organization; 2006. - PubMed
    1. WHO . Global Plan for insecticide resistance management (GPIRM) Geneva: World Health Organization; 2012.
    1. Wondji C, Irving H, Morgan J, Lobo N, Collins F, Hunt R, et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 2009;19:452–459. doi: 10.1101/gr.087916.108. - DOI - PMC - PubMed
    1. Ranson H, Abdalla H, Badolo A, Guelbeogo W, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, et al. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009;8:299. doi: 10.1186/1475-2875-8-299. - DOI - PMC - PubMed
    1. Nkya T, Akhouayri I, Kisinza W, David J. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–416. doi: 10.1016/j.ibmb.2012.10.006. - DOI - PubMed

LinkOut - more resources