Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 17:11:10.
doi: 10.1186/s12263-016-0518-4. eCollection 2016.

Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats

Affiliations

Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats

Abhijit Ghadge et al. Genes Nutr. .

Abstract

Background: Emerging evidence suggests beneficial effects of omega-3 fatty acids on diabetic complications. The present study compared the progressive effects of metformin and flax/fish oil on lipid metabolism, inflammatory markers, and liver and renal function test markers in streptozotocin-nicotinamide-induced diabetic rats.

Methods: Streptozotocin-induced diabetic rats were randomized into control and four diabetic groups: streptozotocin (STZ), metformin (200 mg/kg body weight (b.w)/day (D)), flax and fish oil (500 mg/kg b.w/D).

Results: Metformin and flax and fish oil exhibited increased expression of transcription factor peroxisome proliferator-activated receptor γ while the treatment downregulated sterol regulatory element-binding protein 1 and nuclear factor kβ as compared to those of the STZ group. Apart from modulation of transcription factor expression, the expression of fatty acid synthase, long chain acyl CoA synthase, and malonyl-CoA-acyl carrier protein transacylase was lowered by flax/fish oil treatment. Serum cholesterol, triglycerides, and VLDL were also significantly reduced in the treatment groups as compared to those in the STZ group. Although pathological abnormalities were seen in the liver and kidneys of rats on metformin, no significant changes in liver/renal function markers were observed at day 15 and day 30 of the treatment groups. Flax/fish oil had protective effects toward pathological abnormalities in the liver and kidney. Flax/fish oil improved lipid profile and alkaline phosphatase at day 30 as compared to that at day 15.

Conclusions: The present study demonstrates potential beneficial effects of metformin and flax/fish oil intervention in improving serum lipid profile by regulating the expression of transcription factors and genes involved in lipid metabolism in diabetic rats. In addition, these interventions also lowered the expression of atherogenic cytokines. The protective effects of flax/fish oil are worth investigating in human subjects on metformin monotherapy.

Keywords: Fish oil; Flax oil; Metformin; Omega-3 fatty acids; Streptozotocin.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Study design
Fig. 2
Fig. 2
a Expression of genes involved in lipid metabolism and inflammation. Data are presented as mean ± SE. *p < 0.05, **p < 0.01 for comparison between the control and STZ group and # p < 0.05, ## p < 0.01 for comparison between the STZ group and treatment groups. GAPDH glyceraldehyde-3-phosphate dehydrogenase, PPARγ peroxisome proliferator-activated receptors γ, SREBP1 sterol regulatory element-binding protein, NFκβ nuclear factor kappa β, FAS fatty acid synthase, ACSL long chain acyl CoA synthetases, MCAT malonyl-CoA-acyl carrier protein transacylase, TNFα tumor necrosis factor α. b Diagrammatic representation of the possible mechanism of metformin and flax and fish oil on the lipid metabolism and inflammatory cytokines. PPARγ peroxisome proliferator-activated receptors γ, SREBP sterol regulatory element-binding protein, NFκβ nuclear factor kappa β, FAS fatty acid synthase, ACSL long chain acyl CoA synthetases, MCAT malonyl-CoA-acyl carrier protein transacylase, TNFα tumor necrosis factor α, up arrow up-regulation, down arrow down-regulation
Fig. 3
Fig. 3
a Liver histology of control, STZ-induced diabetic, metformin-treated, and flax/fish oil-treated animals. Hematoxylin and eosin-stained cross sections of paraffin-embedded liver tissues of rats from the control and experimental groups (×40). Liver from the control group shows normal architecture. Sections of the liver from the STZ-induced diabetic group show severe destruction of hepatic cells, pathological calcification, hemorrhages, and mild mononuclear cells in the portal tracts. Liver from the metformin-treated group shows some destructive changes and congestion of some central vein. The liver histology of animals treated with flax oil and fish oil shows completely normal liver architecture without any anatomically detectable anomalies. b Kidney histology of healthy, STZ-induced diabetic, metformin-treated, and flax/fish oil-treated animals. Hematoxylin and eosin-stained cross sections of paraffin-embedded kidney tissues of rats from the control and experimental groups (×40). Kidney from the control group shows normal kidney architecture. Sections of kidney from the STZ diabetic group showed conjunction of glomerular capillary and blood vesicle. Some tubular epithelial cells show vacuolation and cloudy changes. Kidney from the metformin-treated group shows vacuolation of some tubular epithelial cells and conjunction of glomerular capillary. The liver histology of animals treated with flax and fish oil shows no considerable changes and show normal architecture

Similar articles

Cited by

References

    1. Ahmed D, Kumar V, Verma A, Gupta PS, Kumar H, Dhingra V, Mishra V, Sharma M. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of albizzia lebbeck benth. Stem bark (alex) on streptozotocin induced diabetic rats. BMC Complement Altern Med. 2014;14:243. doi: 10.1186/1472-6882-14-243. - DOI - PMC - PubMed
    1. Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact. 2011;192(3):233–242. doi: 10.1016/j.cbi.2011.03.014. - DOI - PubMed
    1. Ander BP, Dupasquier CMC, Prociuk MA, Pierce GN. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp Clin Cardiol. 2003;8(4):164–172. - PMC - PubMed
    1. Bremer AA, Stanhope KL, Graham JL, Cummings BP, Ampah SB, Saville BR, Havel PJ. Fish oil supplementation ameliorates fructose-induced hyperTG mia and insulin resistance in adult male rhesus macaques. J Nutr. 2014;144(1):5–11. doi: 10.3945/jn.113.178061. - DOI - PMC - PubMed
    1. Brenna O, Qvigstad G, Brenna E, Waldum HL. Cytotoxicity of streptozotocin on neuroendocrine cells of the pancreas and the gut. Dig Dis Sci. 2003;48(5):906–910. doi: 10.1023/A:1023043411483. - DOI - PubMed

LinkOut - more resources