Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Aug 8:3:26.
doi: 10.3389/fnut.2016.00026. eCollection 2016.

Considerations For Optimizing Microbiome Analysis Using a Marker Gene

Affiliations
Review

Considerations For Optimizing Microbiome Analysis Using a Marker Gene

Jacobo de la Cuesta-Zuluaga et al. Front Nutr. .

Abstract

Next-generation sequencing technologies have found a widespread use in the study of host-microbe interactions due to the increase in their throughput and their ever-decreasing costs. The analysis of human-associated microbial communities using a marker gene, particularly the 16S rRNA, has been greatly benefited from these technologies - the human gut microbiome research being a remarkable example of such analysis that has greatly expanded our understanding of microbe-mediated human health and disease, metabolism, and food absorption. 16S studies go through a series of in vitro and in silico steps that can greatly influence their outcomes. However, the lack of a standardized workflow has led to uncertainties regarding the transparency and reproducibility of gut microbiome studies. We, here, discuss the most common challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, its use as template in PCR with primers that amplify specific hypervariable regions of the gene, amplicon sequencing, the denoising and removal of low-quality reads, the detection and removal of chimeric sequences, the clustering of high-quality sequences into operational taxonomic units, and their taxonomic classification. We recommend the essential technical information that should be conveyed in publications for reproducibility of results and encourage non-experts to include procedures and available tools that mitigate most of the problems encountered in microbiome analysis.

Keywords: 16S rRNA; gut microbiome; next-generation sequencing; personalized medicine; personalized nutrition.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic view of the archetypical workflow in 16S rRNA studies, and some of the problems associated with each step. Dotted lines link the workflow with steps beyond the scope of the review, and dashed lines represent non-standard steps.

References

    1. Brüssow H. Human microbiota: “the philosophers have only interpreted the world in various ways. The point, however, is to change it”. Microb Biotechnol (2015) 8(1):11–2.10.1111/1751-7915.12259 - DOI - PMC - PubMed
    1. Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe (2016) 19(1):12–20.10.1016/j.chom.2015.12.016 - DOI - PubMed
    1. Foxx-Orenstein AE, Chey WD. Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders. Am J Gastroenterol Suppl (2012) 1(1):41–6.10.1038/ajgsup.2012.8 - DOI
    1. He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes. Nutr Res (2015) 35(5):361–7.10.1016/j.nutres.2015.03.002 - DOI - PubMed
    1. Butel M-J. Probiotics, gut microbiota and health. Médecine Mal Infect. (2014) 44(1):1–8.10.1016/j.medmal.2013.10.002 - DOI - PubMed