Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 23;17(1):671.
doi: 10.1186/s12864-016-2988-4.

CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems

Affiliations

CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems

Anne Abot et al. BMC Genomics. .

Abstract

Background: Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharides or glycans.

Results: This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota.

Conclusions: The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.

Keywords: CAZymes detection; Glycoside hydrolase; Microarray; Microbial functional diversity; Plant cell wall degradation; Transcriptomic analysis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Heatmaps of log base 2 intensity signal of targeted probes for GHs cloned in plasmids samples. Each horizontal line represents a probe, and each vertical line represents an individual sample. Genes that were overexpressed are in red, whereas genes weakly expressed are in green. The color intensity indicates the degree of variation in expression
Fig. 2
Fig. 2
Heatmaps of log base 2 intensity signal of targeted probes for GHs cloned in fosmids a samples from termite microbiota labeled with cyanine 3 (left panel) or labeled with cyanine 5 (right panel), b samples from human microbiota and c samples from cattle rumen microbiota. Each horizontal line represents a probe, and each vertical line represents an individual sample. Genes that were overexpressed are in red, whereas genes weakly expressed are in green. The color intensity indicates the degree of variation in expression
Fig. 3
Fig. 3
Expressed GH family known to be implicated in plant cell wall (PCW) degradation in day 3 and 5. For details see Additional file 6: Table S4

References

    1. Arnal G, Bastien G, Monties N, Abot A, Anton Leberre V, Bozonnet S, et al. Investigating the function of an arabinan utilization locus isolated from a termite gut community. Appl Environ Microbiol. 2015;81:31–9. doi: 10.1128/AEM.02257-14. - DOI - PMC - PubMed
    1. Bastien G, Arnal G, Bozonnet S, Laguerre S, Ferreira F, Fauré R, et al. Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnol Biofuels. 2013;6:78. doi: 10.1186/1754-6834-6-78. - DOI - PMC - PubMed
    1. Bayer EA, Belaich J-P, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 2004;58:521–54. doi: 10.1146/annurev.micro.57.030502.091022. - DOI - PubMed
    1. Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001;56:326–38. doi: 10.1007/s002530100704. - DOI - PubMed
    1. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics Oxf Engl. 2003;19:185–93. doi: 10.1093/bioinformatics/19.2.185. - DOI - PubMed

MeSH terms