Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 22;10(6):1100-1109.
doi: 10.1002/cssc.201600693. Epub 2016 Aug 25.

Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols

Affiliations

Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols

Jonathan Albo et al. ChemSusChem. .

Abstract

The electrocatalytic reduction of CO2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu36 -C9 H3 O6 )2 ]n ; (2) CuAdeAce MOF, [Cu33 -C5 H4 N5 )2 ]n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C2 H2 N2 S2 )]n ; and (4) CuZnDTA MOA, [Cu0.6 Zn0.4 (μ-C2 H2 N2 S2 )]n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm-2 , an electrolyte-flow/area ratio of 3 mL min cm-2 , and a gas-flow/area ratio of 20 mL min cm-2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively.

Keywords: alcohols; copper; electrodes; metal-organic frameworks; reduction.

PubMed Disclaimer

Publication types

LinkOut - more resources