Real-Time Genome Sequencing of Resistant Bacteria Provides Precision Infection Control in an Institutional Setting
- PMID: 27558178
- PMCID: PMC5121374
- DOI: 10.1128/JCM.00790-16
Real-Time Genome Sequencing of Resistant Bacteria Provides Precision Infection Control in an Institutional Setting
Abstract
The increasing prevalence of multidrug-resistant (MDR) bacteria is a serious global challenge. Here, we studied prospectively whether bacterial whole-genome sequencing (WGS) for real-time MDR surveillance is technical feasible, returns actionable results, and is cost-beneficial. WGS was applied to all MDR isolates of four species (methicillin-resistant Staphylococcus aureus [MRSA], vancomycin-resistant Enterococcus faecium, MDR Escherichia coli, and MDR Pseudomonas aeruginosa) at the University Hospital Muenster, Muenster, Germany, a tertiary care hospital with 1,450 beds, during two 6-month intervals. Turnaround times (TAT) were measured, and total costs for sequencing per isolate were calculated. After cancelling prior policies of preemptive isolation of patients harboring certain Gram-negative MDR bacteria in risk areas, the second interval was conducted. During interval I, 645 bacterial isolates were sequenced. From culture, TATs ranged from 4.4 to 5.3 days, and costs were €202.49 per isolate. During interval II, 550 bacterial isolates were sequenced. Hospital-wide transmission rates of the two most common species (MRSA and MDR E. coli) were low during interval I (5.8% and 2.3%, respectively) and interval II (4.3% and 5.0%, respectively). Cancellation of isolation of patients infected with non-pan-resistant MDR E. coli in risk wards did not increase transmission. Comparing sequencing costs with avoided costs mostly due to fewer blocked beds during interval II, we saved in excess of €200,000. Real-time microbial WGS in our institution was feasible, produced precise actionable results, helped us to monitor transmission rates that remained low following a modification in isolation procedures, and ultimately saved costs.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Figures


Similar articles
-
Next-Generation Epidemiology: Using Real-Time Core Genome Multilocus Sequence Typing To Support Infection Control Policy.J Clin Microbiol. 2016 Dec;54(12):2850-2853. doi: 10.1128/JCM.01714-16. Epub 2016 Sep 14. J Clin Microbiol. 2016. PMID: 27629902 Free PMC article.
-
Quantifying acquisition and transmission of Enterococcus faecium using genomic surveillance.Nat Microbiol. 2021 Jan;6(1):103-111. doi: 10.1038/s41564-020-00806-7. Epub 2020 Oct 26. Nat Microbiol. 2021. PMID: 33106672 Free PMC article.
-
Comprehensive integrated NGS-based surveillance and contact-network modeling unravels transmission dynamics of vancomycin-resistant enterococci in a high-risk population within a tertiary care hospital.PLoS One. 2020 Jun 24;15(6):e0235160. doi: 10.1371/journal.pone.0235160. eCollection 2020. PLoS One. 2020. PMID: 32579600 Free PMC article.
-
[Hospital infection control measures for methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci].Nihon Rinsho. 2002 Nov;60(11):2144-9. Nihon Rinsho. 2002. PMID: 12440120 Review. Japanese.
-
[Recent trend and research issues related to antimicrobial-resistant bacteria].Masui. 2010 Jan;59(1):4-16. Masui. 2010. PMID: 20077765 Review. Japanese.
Cited by
-
High Nuclease Activity of Long Persisting Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis Patients Protects Against NET-Mediated Killing.Front Immunol. 2019 Nov 5;10:2552. doi: 10.3389/fimmu.2019.02552. eCollection 2019. Front Immunol. 2019. PMID: 31772562 Free PMC article.
-
Use of MALDI-TOF mass spectrometry to detect nosocomial outbreaks of Serratia marcescens and Citrobacter freundii.Eur J Clin Microbiol Infect Dis. 2019 Mar;38(3):581-591. doi: 10.1007/s10096-018-03462-2. Epub 2019 Jan 24. Eur J Clin Microbiol Infect Dis. 2019. PMID: 30680577
-
[Hygiene aspects of multidrug-resistant pathogens in the operating room and intensive care unit].Anaesthesist. 2019 May;68(5):329-340. doi: 10.1007/s00101-019-0594-y. Anaesthesist. 2019. PMID: 31049601 German.
-
Pharyngeal Communities and Antimicrobial Resistance in Pangolins in Gabon.Microbiol Spectr. 2023 Aug 17;11(4):e0066423. doi: 10.1128/spectrum.00664-23. Epub 2023 Jun 20. Microbiol Spectr. 2023. PMID: 37338382 Free PMC article.
-
Genomics for antimicrobial resistance-progress and future directions.Antimicrob Agents Chemother. 2025 May 7;69(5):e0108224. doi: 10.1128/aac.01082-24. Epub 2025 Apr 14. Antimicrob Agents Chemother. 2025. PMID: 40227048 Free PMC article. Review.
References
-
- World Health Organization. 2014. Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland: http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf Accessed 2 January 2015.
-
- Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H. 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751. doi:10.1371/journal.pone.0022751. - DOI - PMC - PubMed
-
- Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R; E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium. 2011. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365:718–724. doi:10.1056/NEJMoa1107643. - DOI - PubMed
-
- Eyre DW, Golubchik T, Gordon NC, Bowden R, Piazza P, Batty EM, Ip CL, Wilson DJ, Didelot X, O'Connor L, Lay R, Buck D, Kearns AM, Shaw A, Paul J, Wilcox MH, Donnelly PJ, Peto TE, Walker AS, Crook DW. 2012. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2:e001124. doi:10.1136/bmjopen-2012-001124. - DOI - PMC - PubMed
-
- Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill J, Peacock SJ, Bentley SD. 2010. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474. doi:10.1126/science.1182395. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical