Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec;43(12):1191-1198.
doi: 10.1111/1440-1681.12656.

Inhibition of CD8+ T cells and elimination of myeloid cells by CD4+ Foxp3- T regulatory type 1 cells in acute respiratory distress syndrome

Affiliations

Inhibition of CD8+ T cells and elimination of myeloid cells by CD4+ Foxp3- T regulatory type 1 cells in acute respiratory distress syndrome

Guang-Gang Li et al. Clin Exp Pharmacol Physiol. 2016 Dec.

Abstract

Acute lung injury and acute respiratory distress syndrome (ARDS) are caused by rapid-onset bilateral pulmonary inflammation. We therefore investigated the potential role of interleukin (IL)-10+ CD4+ Tr1 cells, a regulatory T cell subset with previously identified immunosuppressive functions, in ARDS patients. We first showed that circulating Tr1 cells were upregulated in active and resolved ARDS patients compared to healthy controls and pneumonia patient controls. A significant fraction of these Tr1 cells expressed granzyme B and perforin, while most Tr1 cells did not express interferon gamma (IFN-γ), IL-4, IL-17 or FOXP3, suggesting that the effector functions of these Tr1 cells were primarily mediated by IL-10, granzyme B, and perforin. Indeed, Tr1 cells effectively suppressed CD8+ T cell IFN-γ production and induced lysis of monocytes and dendritic cells in vitro. The elimination of myeloid antigen-presenting cells depended on granzyme B production. We also discovered that Tr1 cells could be identified in the bronchoalveolar lavage fluid collected from ARDS patients. All these results suggested that Tr1 cells possessed the capacity to downregulate inflammation in ARDS. In support of this, we found that ARDS patients who resolved the inflammation and survived the syndrome contained significantly higher levels of Tr1 cells than ARDS patients who succumbed to the syndrome. Overall, this report added a novel piece of evidence that ARDS could be intervened by regulatory T cell-mediated suppressive mechanisms.

Keywords: Tr1 cell; acute lung injury; acute respiratory distress syndrome.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources