Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Oct 11;7(41):67551-67573.
doi: 10.18632/oncotarget.11509.

Pediatric Hodgkin lymphoma: biomarkers, drugs, and clinical trials for translational science and medicine

Affiliations
Review

Pediatric Hodgkin lymphoma: biomarkers, drugs, and clinical trials for translational science and medicine

Poonam Nagpal et al. Oncotarget. .

Abstract

Hodgkin lymphoma (HL) is a lymphoid malignancy that is typically derived from germinal-center B cells. EBV infection, mutations in NF-κB pathway genes, and genetic susceptibility are known risk factors for developing HL. CD30 and NF-κB have been identified as potential biomarkers in pediatric HL patients, and these molecules may represent therapeutic targets. Although current risk adapted and response based treatment approaches yield overall survival rates of >95%, treatment of relapse or refractory patients remains challenging. Targeted HL therapy with the antibody-drug conjugate Brentuximab vedotin (Bv) has proven to be superior to conventional salvage chemotherapy and clinical trials are being conducted to incorporate Bv into frontline therapy that substitutes Bv for alkylating agents to minimize secondary malignancies. The appearance of secondary malignancies has been a concern in pediatric HL, as these patients are at highest risk among all childhood cancer survivors. The risk of developing secondary leukemia following childhood HL treatment is 10.4 to 174.8 times greater than the risk in the general pediatric population and the prognosis is significantly poorer than the other hematological malignancies with a mortality rate of nearly 100%. Therefore, identifying clinically valuable biomarkers is of utmost importance to stratify and select patients who may or may not need intensive regimens to maintain optimal balance between maximal survival rates and averting late effects. Here we discuss epidemiology, risk factors, staging, molecular and genetic prognostic biomarkers, treatment for low and high-risk patients, and the late occurrence of secondary malignancies in pediatric HL.

Keywords: Hodgkin lymphoma; adolescent; biomarker; pediatric; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Potential molecular biomarkers in pediatric Hodgkin lymphoma
Interplay of biomarkers in different molecular networks in the tumor microenvironment of Hodgkin lymphoma presenting with infiltration, evasion, and metastasis. Bcl-2, B-cell lymphoma 2; HA, Hyaluronic acid; ICAM-1, Intercellular Adhesion Molecule 1; IκB, Inhibitor of κB; IKK, IκB kinase; LFA-1, Lymphocyte Function Antigen-1; LMP-1, latent membrane protein 1; Th, T helper; VEGEF, Vascular Growth Endothelial Factor.
Figure 2
Figure 2. Molecular targets and agents affecting specific targets in pediatric Hodgkin lymphoma
Multiple pathways are implicated in Hodgkin lymphoma and thus present potential targets for therapy. The various targets and agents illustrate the need for future clinical trials to focus on synergistic action of inhibitors to kill tumor cells. The drugs are listed in blue boxes adjacent to the corresponding target. HDAC, histone deacetylase; MMAE, monomethyl auristatin E; PD1, programmed cell death protein 1; PD-L1, programmed death-ligand 1.

References

    1. Kuppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R, Hansmann ML. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A. 1994;91:10962–10966. - PMC - PubMed
    1. Bräuninger A, Wacker HH, Rajewsky K, Küppers R, Hansmann ML. Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin's lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin's lymphoma. Cancer Res. 2003;63:1644–1651. - PubMed
    1. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. The Journal of experimental medicine. 1996;184:1495–1505. - PMC - PubMed
    1. Kuppers R, Schwering I, Brauninger A, Rajewsky K, Hansmann ML. Biology of Hodgkin's lymphoma. Ann Oncol. 2002;13(Suppl 1):11–18. - PubMed
    1. Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, Hansmann ML, Dalla-Favera R, Rajewsky K, Kuppers R. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101:1505–1512. - PubMed