Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Aug 26;8(9):523.
doi: 10.3390/nu8090523.

Distant Site Effects of Ingested Prebiotics

Affiliations
Review

Distant Site Effects of Ingested Prebiotics

Stephanie Collins et al. Nutrients. .

Abstract

The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption.

Keywords: bone; brain; cardiovascular; immune; microbiome; prebiotics.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Turroni F., Ventura M., Buttó L.F., Duranti S., O’Toole P.W., Motherway M.O., van Sinderen D. Molecular dialogue between the human gut microbiota and the host: A Lactobacillus and Bifidobacterium perspective. Cell. Mol. Life Sci. 2014;71:183–203. doi: 10.1007/s00018-013-1318-0. - DOI - PMC - PubMed
    1. Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. - PubMed
    1. Gibson G.R., Probert H.M., Loo J.V., Rastall R.A., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. - DOI - PubMed
    1. Patel S., Goyal A. Functional oligosaccharides: Production, properties and applications. World J. Microbiol. Biotechnol. 2011;27:1119–1128. doi: 10.1007/s11274-010-0558-5. - DOI
    1. Roberfroid M.B. Health benefits of non-digestible oligosaccharides. Adv. Exp. Med. Biol. 1997;427:211–219. - PubMed

LinkOut - more resources