Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 19;27(15):1174-81.
doi: 10.1097/WNR.0000000000000676.

Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy

Affiliations

Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy

Si-Fang Lin et al. Neuroreport. .

Abstract

Substantial evidence indicates that T-type Cav3.2 channel and insulin-like growth factor-1 (IGF-1) contribute to pain hypersensitivity within primary sensory nerves. A recent study suggested that activation of IGF-1 receptor (IGF-1R) could increase Cav3.2 channel currents and further contribute to inflammatory pain sensitivity. However, the expression patterns of Cav3.2 and IGF-1R and their colocalization in dorsal root ganglion (DRG) in chronic neuropathic pain condition remain unknown. In this study, we explored expression patterns of Cav3.2, IGF-1R and their colocalization, and whether phenotypic switch occurs in a subpopulation of Cav3.2 or IGF-1R neurons in mouse DRGs after sciatic nerve axotomy with immunofluorescence, real-time reverse transcription-PCR, and western blot assays. We found that expressions of Cav3.2 and IGF-1R, and their colocalization were not increased in DRGs of mice following axotomy. In addition, Cav3.2 or IGF-1R subpopulation neurons did not acquire significant switch in expression phenotype after sciatic nerve axotomy. Our findings argue for an upregulation of Cav3.2 and IGF-1R expression in lumbar DRGs post-sciatic nerve axotomy and provided an insight for understanding the functions of peripheral afferent Cav3.2 channel and IGF-1/IGF-1R signaling in chronic neuropathic pain.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources