Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 2;95(5):1090-1093.
doi: 10.4269/ajtmh.16-0483. Epub 2016 Aug 29.

Artemisinin Resistance-Associated K13 Polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010-2015

Affiliations

Artemisinin Resistance-Associated K13 Polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010-2015

Costanza Tacoli et al. Am J Trop Med Hyg. .

Abstract

Emerging artemisinin resistance is a threat to global malaria control. Mutations in the Plasmodium falciparum Kelch 13 (K13) propeller domain confer artemisinin resistance and constitute molecular markers for its detection and monitoring. We sequenced 222 P. falciparum isolates obtained from community children in the Huye District of southern Rwanda in 2010, 2014, and 2015 to investigate the presence of K13 polymorphisms. No polymorphisms were observed in 2010 but they were present in 2.5% and 4.5% in 2014 and 2015, respectively. In 2015, two isolates showed candidate K13 resistance mutations (P574L and A675V), which are common in southeast Asia and associated with delayed parasite clearance. K13 polymorphisms in southern Rwanda are infrequent but include variants associated with artemisinin resistance. Establishing correlations with local treatment response and in vitro resistance assays are needed in addition to further monitoring K13 polymorphisms in the study area.

PubMed Disclaimer

References

    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Kamolrat S, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. - PMC - PubMed
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khantavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, Macinnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondrop AM, Day NP, White NJ. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–423. - PMC - PubMed
    1. World Health Organization Artemisinin and Artemisinin-Based Combination Therapy Resistance. 2016. http://apps.who.int/iris/bitstream/10665/208820/1/WHO_HTM_GMP_2016.5_eng... Available at. Accessed June 10, 2016.
    1. Saunders DL, Vanachayangkul P, Lon C. N Engl J Med. 2014;371:484–485. - PubMed
    1. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Zhong K, Liles WC, John CC, Kain KC. Slow clearance of Plasmodium falciparum in severe pediatric malaria, Uganda, 2011–2013. Emerg Infect Dis. 2015;21:1237–1239. - PMC - PubMed