Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2016 Jul 1;57(9):OCT568-74.
doi: 10.1167/iovs.15-18853.

Development of a Fiber-Optic Optical Coherence Tomography Probe for Intraocular Use

Affiliations
Clinical Trial

Development of a Fiber-Optic Optical Coherence Tomography Probe for Intraocular Use

Tetsu Asami et al. Invest Ophthalmol Vis Sci. .

Abstract

Purpose: To evaluate the performance of a newly developed 23-G optical coherence tomography (OCT) probe in animal and human eyes.

Methods: The probe is a side-imaging OCT device with a scanning beam set 43° to the optical axis and a working distance of 1.5 to 2.0 mm. The performance of the OCT probe was tested during vitrectomy in porcine cadaver eyes and rabbit eyes in situ. Optical coherence tomography images of a normal retina, retinal break, optic disc, pars plicata of the ciliary body, and intraoperative surgical manipulations were recorded. The probe was also tested in a pilot study of clinical cases; intraoperative real-time OCT imaging was performed in three patients, including a 56-year-old woman with an epiretinal membrane.

Results: The OCT probe was able to delineate intraocular tissues, including the posterior retina, and even the most peripheral pars plicata in animal eyes. The OCT probe also successfully delineated intraoperative surgical maneuvers such as membrane peeling and the minute structures of the vortex veins, ora serrata, and vitreous incarceration in the scleral incision from the trocar with sufficient resolution in the patients. There were no complications resulting from its use.

Conclusions: The ability of this new 23-G OCT probe to obtain images of intraoperative manipulations from the most peripheral tissues in animal and patient eyes suggests that it could enable surgeons to make better decisions during the course of intraocular surgery.

PubMed Disclaimer

Publication types

Associated data