Chaperones in maturation of molybdoenzymes: Why specific is better than general?
- PMID: 27580420
- PMCID: PMC5398582
- DOI: 10.1080/21655979.2016.1218579
Chaperones in maturation of molybdoenzymes: Why specific is better than general?
Abstract
Molybdoenzymes play essential functions in living organisms and, as a result, in various geochemical cycles. It is thus crucial to understand how these complex proteins become highly efficient enzymes able to perform a wide range of catalytic activities. It has been established that specific chaperones are involved during their maturation process. Here, we raise the question of the involvement of general chaperones acting in concert with dedicated chaperones or not.
Keywords: general chaperone; maturation; molybdenum cofactor; molybdoenzymes; pyranopterin monophosphate; specific chaperone.
Figures
Similar articles
-
Bacterial molybdoenzymes: old enzymes for new purposes.FEMS Microbiol Rev. 2016 Jan;40(1):1-18. doi: 10.1093/femsre/fuv043. Epub 2015 Oct 13. FEMS Microbiol Rev. 2016. PMID: 26468212 Review.
-
Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes.FEMS Microbiol Lett. 2009 Aug;297(1):1-9. doi: 10.1111/j.1574-6968.2009.01660.x. Epub 2009 May 21. FEMS Microbiol Lett. 2009. PMID: 19519768 Review.
-
Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.J Biol Chem. 2008 Aug 1;283(31):21433-40. doi: 10.1074/jbc.M802954200. Epub 2008 Jun 2. J Biol Chem. 2008. PMID: 18522945
-
Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.FEMS Microbiol Lett. 2006 Dec;265(1):51-5. doi: 10.1111/j.1574-6968.2006.00468.x. FEMS Microbiol Lett. 2006. PMID: 17107419
-
The biosynthesis of the molybdenum cofactors.J Biol Inorg Chem. 2015 Mar;20(2):337-47. doi: 10.1007/s00775-014-1173-y. Epub 2014 Jul 1. J Biol Inorg Chem. 2015. PMID: 24980677
Cited by
-
Same but different: Comparison of two system-specific molecular chaperones for the maturation of formate dehydrogenases.PLoS One. 2018 Nov 16;13(11):e0201935. doi: 10.1371/journal.pone.0201935. eCollection 2018. PLoS One. 2018. PMID: 30444874 Free PMC article.
References
-
- Pateman JA, Cove DJ, Rever BM, Roberts DB. A common co-factor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature 1964; 201:58-60; PMID:14085568; http://dx.doi.org/10.1038/201058a0 - DOI - PubMed
-
- Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W. The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Sci Rep 2012; 2:263; PMID:22355775; http://dx.doi.org/10.1038/srep00263 - DOI - PMC - PubMed
-
- Mendel RR, Leimkühler S. The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem JBIC Publ Soc Biol Inorg Chem 2015; 20:337-47; http://dx.doi.org/10.1007/s00775-014-1173-y - DOI - PubMed
-
- Hille R, Hall J, Basu P. The mononuclear molybdenum enzymes. Chem Rev 2014; 114:3963-4038; PMID:24467397; http://dx.doi.org/10.1021/cr400443z - DOI - PMC - PubMed
-
- Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 2016; 40:1-18; PMID:26468212; http://dx.doi.org/10.1093/femsre/fuv043 - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources