Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex
- PMID: 27582008
- PMCID: PMC5404416
- DOI: 10.1007/s00792-016-0871-5
Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex
Abstract
CRISPR-Cas immune systems defend prokaryotes against viruses and plasmids. CRISPR RNAs (crRNAs) associate with various CRISPR-associated (Cas) protein modules to form structurally and functionally diverse (Type I-VI) crRNP immune effector complexes. Previously, we identified three, co-existing effector complexes in Pyrococcus furiosus -Type I-A (Csa), Type I-G (Cst), and Type III-B (Cmr)-and demonstrated that each complex functions in vivo to eliminate invader DNA. Here, we reconstitute functional Cst crRNP complexes in vitro from recombinant Cas proteins and synthetic crRNAs and investigate mechanisms of crRNP assembly and invader DNA recognition and destruction. All four known Cst-affiliated Cas proteins (Cas5t, Cst1, Cst2, and Cas3) are required for activity, but each subunit plays a distinct role. Cas5t and Cst2 comprise a minimal set of proteins that selectively interact with crRNA. Further addition of Cst1, enables the four subunit crRNP (Cas5t, Cst1, Cst2, crRNA) to specifically bind complementary, double-stranded DNA targets and to recruit the Cas3 effector nuclease, which catalyzes cleavages at specific sites within the displaced, non-target DNA strand. Our results indicate that Type I-G crRNPs selectively bind target DNA in a crRNA and, protospacer adjacent motif dependent manner to recruit a dedicated Cas3 nuclease for invader DNA destruction.
Keywords: CRISPR; Cas; Cas3; Cst; Pyrococcus furiosus; Type I-G.
Figures








Similar articles
-
CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes.Extremophiles. 2019 Jan;23(1):19-33. doi: 10.1007/s00792-018-1057-0. Epub 2018 Oct 3. Extremophiles. 2019. PMID: 30284045 Free PMC article.
-
Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22. RNA. 2015. PMID: 25904135 Free PMC article.
-
DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30. Nucleic Acids Res. 2015. PMID: 26519471 Free PMC article.
-
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.Biochem Soc Trans. 2013 Dec;41(6):1416-21. doi: 10.1042/BST20130056. Biochem Soc Trans. 2013. PMID: 24256230 Free PMC article. Review.
-
Structures and mechanisms of CRISPR RNA-guided effector nucleases.Curr Opin Struct Biol. 2017 Apr;43:68-78. doi: 10.1016/j.sbi.2016.11.013. Epub 2016 Nov 30. Curr Opin Struct Biol. 2017. PMID: 27912110 Review.
Cited by
-
The nuts and bolts of the Haloferax CRISPR-Cas system I-B.RNA Biol. 2019 Apr;16(4):469-480. doi: 10.1080/15476286.2018.1460994. Epub 2018 May 21. RNA Biol. 2019. PMID: 29649958 Free PMC article.
-
DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features.Nucleic Acids Res. 2020 Oct 9;48(18):10470-10478. doi: 10.1093/nar/gkaa749. Nucleic Acids Res. 2020. PMID: 32960267 Free PMC article.
-
International Conference on Extremophiles 2016.Extremophiles. 2017 Jan;21(1):1-2. doi: 10.1007/s00792-016-0906-y. Extremophiles. 2017. PMID: 28013384 No abstract available.
-
Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium.Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2205068119. doi: 10.1073/pnas.2205068119. Epub 2022 Jul 20. Proc Natl Acad Sci U S A. 2022. PMID: 35857876 Free PMC article.
-
Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales.Biomolecules. 2020 Nov 6;10(11):1523. doi: 10.3390/biom10111523. Biomolecules. 2020. PMID: 33172134 Free PMC article. Review.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources