Two structural genes on different chromosomes are required for encoding the major subunit of human red cell glucose-6-phosphate dehydrogenase
- PMID: 2758468
- DOI: 10.1016/0092-8674(89)90440-6
Two structural genes on different chromosomes are required for encoding the major subunit of human red cell glucose-6-phosphate dehydrogenase
Abstract
Structural analysis revealed the existence of two types of subunits in human red cell glucose-6-phosphate dehydrogenase. The two subunits have the same COOH region consisting of 479 amino acid residues, but their NH2-terminal regions are different in size and sequence. The minor subunit can be fully encoded by the X-linked G6PD cDNA, but the NH2-terminal region of the major subunit cannot. The cDNA and the gene for the NH2-terminal region of the major subunit were cloned and characterized. Southern blot hybridization indicated that the gene for the NH2-terminal region is on chromosome 6, not on the X chromosome. Northern blot hybridization demonstrated an existence of two separate mRNA components, one for the COOH-terminal region and the other for the NH2-terminal region. Two separate structural genes, the X-linked and chromosome 6-linked genes, must be coresponsible for encoding the single chain subunit. Either cross-translation of two mRNAs, or transpeptidation, or some other mechanism must be involved in the synthesis of human red cell G6PD.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
