Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 26;10 Suppl 3(Suppl 3):63.
doi: 10.1186/s12918-016-0307-y.

Towards understanding brain-gut-microbiome connections in Alzheimer's disease

Affiliations

Towards understanding brain-gut-microbiome connections in Alzheimer's disease

Rong Xu et al. BMC Syst Biol. .

Abstract

Background: Alzheimer's disease (AD) is complex, with genetic, epigenetic, and environmental factors contributing to disease susceptibility and progression. While significant progress has been made in understanding genetic, molecular, behavioral, and neurological aspects of AD, relatively little is known about which environmental factors are important in AD etiology and how they interact with genetic factors in the development of AD. Here, we propose a data-driven, hypotheses-free computational approach to characterize which and how human gut microbial metabolites, an important modifiable environmental factor, may contribute to various aspects of AD.

Materials and methods: We integrated vast amounts of complex and heterogeneous biomedical data, including disease genetics, chemical genetics, human microbial metabolites, protein-protein interactions, and genetic pathways. We developed a novel network-based approach to model the genetic interactions between all human microbial metabolites and genetic diseases. We identified metabolites that share significant genetic commonality with AD in humans. We developed signal prioritization algorithms to identify the co-regulated genetic pathways underlying the identified AD-metabolite (brain-gut) connections.

Results: We validated our algorithms using known microbial metabolite-AD associations, namely AD-3,4-dihydroxybenzeneacetic acid, AD-mannitol, and AD-succinic acid. Our study provides supporting evidence that human gut microbial metabolites may be an important mechanistic link between environmental exposure and various aspects of AD. We identified metabolites that are significantly associated with various aspects in AD, including AD susceptibility, cognitive decline, biomarkers, age of onset, and the onset of AD. We identified common genetic pathways underlying AD biomarkers and its top one ranked metabolite trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. These coregulated pathways between TMAO-AD may provide insights into the mechanisms of how dietary meat and fat contribute to AD.

Conclusions: Employing an integrated computational approach, we provide intriguing and supporting evidence for a role of microbial metabolites, an important modifiable environmental factor, in AD etiology. Our study provides the foundations for subsequent hypothesis-driven biological and clinical studies of brain-gut-environment interactions in AD.

Keywords: Alzheimer’s disease; Disease etiology; Human gut micriobiome; Network medicine; Systems biology.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Datasets used in this study
Fig. 2
Fig. 2
Model the genetic interactions between microbial metabolites and diseases by constructing a metabolite-disease genetic interaction network (mGDN) (a) and prioritizing diseases, including AD, for each metabolite (b)
Fig. 3
Fig. 3
Find shared genetic pathways between AD and its associated metabolites
Fig. 4
Fig. 4
Jaccard similarities of metabolites that are significantly associated with two different traits of AD (cognitive decline, biomarkers, age of onset, late onset, susceptibility)

References

    1. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7. doi: 10.1126/science.1223813. - DOI - PubMed
    1. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. doi: 10.1038/nature11552. - DOI - PubMed
    1. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12. doi: 10.1038/nrn3346. - DOI - PubMed
    1. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9. doi: 10.1126/science.1124234. - DOI - PMC - PubMed
    1. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. doi: 10.1016/j.cell.2013.11.024. - DOI - PMC - PubMed

Publication types

MeSH terms