Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 1;16(1):461.
doi: 10.1186/s12879-016-1782-x.

Population-based prevalence of cervical infection with human papillomavirus genotypes 16 and 18 and other high risk types in Tlaxcala, Mexico

Collaborators, Affiliations

Population-based prevalence of cervical infection with human papillomavirus genotypes 16 and 18 and other high risk types in Tlaxcala, Mexico

Samantha E Rudolph et al. BMC Infect Dis. .

Abstract

Background: Cervical cancer remains an important cause of cancer mortality for Mexican women. HPV 16/18 typing may help to improve cervical cancer screening. Here we present the prevalence of high-risk human papillomavirus (hrHPV) including HPV16 and HPV18 from the FRIDA (Forwarding Research for Improved Detection and Access) population.

Methods: Beginning in 2013, we recruited 30,829 women aged 30-64 in Tlaxcala, Mexico. Cervical samples were collected and tested for 14 hrHPV genotypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68). We used logistic regression to estimate odds ratios with 95 % confidence intervals for hrHPV infections according to putative risk factors.

Results: Prevalence of infection with any of the 14 hrHPV types was 11.0 %. The age-specific prevalence of all hrHPV formed a U-shaped curve with a higher prevalence for women aged 30-39 and 50-64 than women aged 40-49. Across all age groups, 2.0 % of women were positive for HPV16 and/or HPV18 (HPV16/18), respectively. HPV16/18 prevalence also showed a U-shaped curve with increased prevalence estimates for women aged both 30-39 and 60-64. Both prevalence curves had a significant quadratic age coefficient. Infections with hrHPV were positively associated with an increased number of lifetime sexual partners, a history of sexually transmitted disease, being unmarried, use of hormonal contraception, having a history of smoking and reported condom use in the multivariate model.

Conclusions: The FRIDA population has a bimodal distribution of both hrHPV and HPV16/18 positivity with higher prevalences at ages 30-39 and 60-64. These findings will help to evaluate triage algorithms based on HPV genotyping.

Trial registration: The trial is registered with ClinicalTrials.gov, number NCT02510027 .

Keywords: HPV16/18; Human papillomavirus DNA testing; Mexico; Prevalence; Risk factors.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Flow Chart of hrHPV Screening of the FRIDA Study Population. Women 30 to 64 years of age living within our target health district were invited by healthcare personnel. This study reports the results from the first 31,629 women who volunteered to participate in the Tlaxcala cervical cancer screening program. Four-hundred and eighty-three women were excluded, leaving 30,829 who had hrHPV results available, in the current analysis. Of those 30,829 women, 3,401 women were positive for hrHPV. Among those 3,401 women, 13.6 % were positive for HPV16, 5.9 % for HPV18 and 1.1 % for both HPV16 and HPV18 coinfection. These three categories indicate positivity independent of the presence of other hrHPV types. The last category of other high risk HPV types include women who tested positive for other hrHPV types (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68), but neither HPV16 nor HPV18
Fig. 2
Fig. 2
Age Specific Prevalence of hrHPV and HPV16/18 with 95 % CI. The overall prevalence of hrHPV was 11.0 % in this population. Two percent of women overall were positive for HPV16 and/or HPV18 (HPV16/18). The prevalence of hrHPV overall and HPV16/18 by age group both show a bimodal distribution with an increased prevalence for the youngest women in the population aged 30–39 and a second bump of positivity for the oldest women aged 60 and above
Fig. 3
Fig. 3
Age Specific Prevalence of hrHPV Types with 95 % CI. The cobas® 4800 system delivers hrHPV results in three categories: HPV16, HPV18, and other hrHPV. Based on these results, we divided the population into three mutually exclusive categories: (1) women positive for only other hrHPV (non-16/18 hrHPV only), (2) women positive for HPV16 and/or HPV18 (HPV16/18), and (3) women positive for HPV16 and/18 as well as another hrHPV (HPV16/18 + other hrHPV). The prevalence of these three categories by age group shows a similar bimodal distribution with increased prevalence values for the youngest and oldest women in the population

Similar articles

Cited by

References

    1. Bruni L, Barrionuevo-Rosas L, Albero G, Aldea M, Serrano B, Valencia S, Brotons M, Mena M, Cosano R, Muñoz J, Bosch FX, de Sanjosé S, Castellsagué X. ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in Mexico. Summary Report 2016-02-26. http://www.hpvcentre.net/statistics/reports/MEX.pdf. [Accesed 22 Aug 2016].
    1. Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJF, Peto J, Meijer CJLM, Muñoz N. Human Papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F. - DOI - PubMed
    1. Muñoz N, Mendez F, Posso H, Molano M, van de Brule AJC, Ronderos M, Meijer CJLM, Muñoz A. Incidence, duration, and determinants of cervical human papillomavirus infection in a cohort of Colombian women with normal cytological results. J Infect Dis. 2004;190:2077–2087. doi: 10.1086/425907. - DOI - PubMed
    1. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin H-R, Vallejos CS, de Ruiz PA, Lima MA, Guimera N, Clavero O, Alejo M, Llombart-Bosch A, Cheng-Yang C, Tatti SA, Kasamatsu E, Iljazovic E, Odida M, Prado R, Seoud M, Grce M, Usubutun A, Jain A, Suarez GA, Lombardi LE, Banjo A, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–1056. doi: 10.1016/S1470-2045(10)70230-8. - DOI - PubMed
    1. Sharma M, Bruni L, Diaz M, Castellsagué X, de Sanjosé S, Bosch FX, Kim JJ. Using HPV prevalence to predict cervical cancer incidence. Int J Cancer. 2012;132:1895–1900. doi: 10.1002/ijc.27835. - DOI - PubMed

MeSH terms

Associated data