Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Oct 4;7(40):65364-65373.
doi: 10.18632/oncotarget.11692.

Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA

Affiliations
Comparative Study

Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA

Young Kwang Chae et al. Oncotarget. .

Abstract

Genomic analysis of tumor tissue is the standard technique for identifying DNA alterations in malignancies. Genomic analysis of circulating tumor cell-free DNA (cfDNA) represents a relatively non-invasive method of assessing genomic alterations using peripheral blood. We compared the concordance of genomic alterations between cfDNA and tissue biopsies in this retrospective study. Twenty-eight patients with advanced solid tumors with paired next-generation sequencing tissue and cfDNA biopsies were identified. Sixty-five genes were common to both assays. Concordance was defined as the presence or absence of the identical genomic alteration(s) in a single gene on both molecular platforms. Including all aberrations, the average number of alterations per patient for tissue and cfDNA analysis was 4.82 and 2.96, respectively. When eliminating alterations not detectable in the cfDNA assay, mean number of alterations for tissue and cfDNA was 3.21 and 2.96, respectively. Overall, concordance was 91.9-93.9%. However, the concordance rate decreased to 11.8-17.1% when considering only genes with reported genomic alterations in either assay. Over 50% of mutations detected in either technique were not detected using the other biopsy technique, indicating a potential complementary role of each assay. Across 5 genes (TP53, EGFR, KRAS, APC, CDKN2A), sensitivity and specificity were 59.1% and 94.8%, respectively. Potential explanations for the lack of concordance include differences in assay platform, spatial and temporal factors, tumor heterogeneity, interval treatment, subclones, and potential germline DNA contamination. These results highlight the importance of prospective studies to evaluate concordance of genomic findings between distinct platforms that ultimately may inform treatment decisions.

Keywords: cell-free DNA; genomic alterations; lung cancer; metastatic disease; next-generation sequencing.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

None.

Figures

Figure 1
Figure 1. Comparing frequency of alterations per gene in tissue and plasma cfDNA
Figure 2
Figure 2. Oncoprint chart for 10 representative genes across all patients

References

    1. Overman MJ, Modak J, Kopetz S, Murthy R, Yao JC, Hicks ME, Abbruzzese JL, Tam AL. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J Clin Oncol. 2013;31:17–22. - PMC - PubMed
    1. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. NEJM. 2012;366:883–892. - PMC - PubMed
    1. Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biology. 2014;15:453. - PMC - PubMed
    1. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shlien A, Cooke SL, Hinton J, et al. The life history of 21 breast cancers. Cell. 2012;149:994–1007. - PMC - PubMed
    1. Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K, Scheet P, Vattathil S, Liang H, Multani A, Zhang H, Zhao R, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature. 2014;512:155–160. - PMC - PubMed

Publication types

MeSH terms

Substances