Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant
- PMID: 27596602
- PMCID: PMC5100594
- DOI: 10.1093/nar/gkw756
Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant
Abstract
We explore the possibility of re-engineering mitochondrial genes and expressing them from the nucleus as an approach to rescue defects arising from mitochondrial DNA mutations. We have used a patient cybrid cell line with a single point mutation in the overlap region of the ATP8 and ATP6 genes of the human mitochondrial genome. These cells are null for the ATP8 protein, have significantly lowered ATP6 protein levels and no Complex V function. Nuclear expression of only the ATP8 gene with the ATP5G1 mitochondrial targeting sequence appended restored viability on Krebs cycle substrates and ATP synthesis capabilities but, failed to restore ATP hydrolysis and was insensitive to various inhibitors of oxidative phosphorylation. Co-expressing both ATP8 and ATP6 genes under similar conditions resulted in stable protein expression leading to successful integration into Complex V of the oxidative phosphorylation machinery. Tests for ATP hydrolysis / synthesis, oxygen consumption, glycolytic metabolism and viability all indicate a significant functional rescue of the mutant phenotype (including re-assembly of Complex V) following stable co-expression of ATP8 and ATP6 Thus, we report the stable allotopic expression, import and function of two mitochondria encoded genes, ATP8 and ATP6, resulting in simultaneous rescue of the loss of both mitochondrial proteins.
© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures







Similar articles
-
Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or v subunits.Rejuvenation Res. 2007 Jun;10(2):127-44. doi: 10.1089/rej.2006.0526. Rejuvenation Res. 2007. PMID: 17518546
-
What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes.Mitochondrion. 2011 Jan;11(1):147-54. doi: 10.1016/j.mito.2010.09.003. Epub 2010 Sep 18. Mitochondrion. 2011. PMID: 20854934
-
T1121G Point Mutation in the Mitochondrial Gene COX1 Suppresses a Null Mutation in ATP23 Required for the Assembly of Yeast Mitochondrial ATP Synthase.Int J Mol Sci. 2022 Feb 19;23(4):2327. doi: 10.3390/ijms23042327. Int J Mol Sci. 2022. PMID: 35216443 Free PMC article.
-
Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies.Int J Mol Sci. 2024 Feb 13;25(4):2239. doi: 10.3390/ijms25042239. Int J Mol Sci. 2024. PMID: 38396915 Free PMC article. Review.
-
[Molecular bases of diseases caused by mutations in genes encoding subunits of ATP synthase].Postepy Biochem. 2018 Dec 29;64(4):304-317. doi: 10.18388/pb.2018_144. Postepy Biochem. 2018. PMID: 30656915 Review. Polish.
Cited by
-
Transformation of nad7 into the nuclear genome rescues the slow growth3 mutant in Arabidopsis.RNA Biol. 2018;15(11):1385-1391. doi: 10.1080/15476286.2018.1546528. Epub 2018 Nov 18. RNA Biol. 2018. PMID: 30422048 Free PMC article.
-
Rapid enrichment of mitochondria from mammalian cell cultures using digitonin.MethodsX. 2020 Dec 23;8:101197. doi: 10.1016/j.mex.2020.101197. eCollection 2021. MethodsX. 2020. PMID: 34434723 Free PMC article.
-
Mitochondrial diseases: from molecular mechanisms to therapeutic advances.Signal Transduct Target Ther. 2025 Jan 10;10(1):9. doi: 10.1038/s41392-024-02044-3. Signal Transduct Target Ther. 2025. PMID: 39788934 Free PMC article. Review.
-
Mitochondrial microRNA (MitomiRs) in cancer and complex mitochondrial diseases: current status and future perspectives.Cell Mol Life Sci. 2021 Feb;78(4):1405-1421. doi: 10.1007/s00018-020-03670-0. Epub 2020 Oct 21. Cell Mol Life Sci. 2021. PMID: 33084945 Free PMC article. Review.
-
Allotopic expression of mitochondrial genes: Basic strategy and progress.Genes Dis. 2019 Aug 31;7(4):578-584. doi: 10.1016/j.gendis.2019.08.001. eCollection 2020 Dec. Genes Dis. 2019. PMID: 33335957 Free PMC article. Review.
References
-
- Schaefer A.M., McFarland R., Blakely E.L., He L., Whittaker R.G., Taylor R.W., Chinnery P.F., Turnbull D.M. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008;63:35–39. - PubMed
-
- Arpa J., Cruz-Martinez A., Campos Y., Gutierrez-Molina M., Garcia-Rio F., Perez-Conde C., Martin M.A., Rubio J.C., Del Hoyo P., Arpa-Fernandez A., et al. Prevalence and progression of mitochondrial diseases: A study of 50 patients. Muscle Nerve. 2003;28:690–695. - PubMed
-
- Chinnery P.F., Johnson M.A., Wardell T.M., Singh-Kler R., Hayes C., Brown D.T., Taylor R.W., Bindoff L.A., Turnbull D.M. The epidemiology of pathogenic mitochondrial DNA mutations. Ann. Neurol. 2000;48:188–193. - PubMed
-
- Cwerman-Thibault H., Sahel J.A., Corral-Debrinski M. Mitochondrial medicine: To a new era of gene therapy for mitochondrial DNA mutations. J. Inherit. Metab. Dis. 2011;34:327–344. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials