Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 4;32(39):10042-10053.
doi: 10.1021/acs.langmuir.6b02499. Epub 2016 Sep 21.

RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly

Affiliations

RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly

William M Aumiller Jr et al. Langmuir. .

Abstract

Liquid-liquid phase separation is responsible for formation of P granules, nucleoli, and other membraneless subcellular organelles composed of RNA and proteins. Efforts to understand the physical basis of liquid organelle formation have thus far focused on intrinsically disordered proteins (IDPs) as major components that dictate occurrence and properties. Here, we show that complex coacervates composed of low complexity RNA (polyuridylic acid, polyU) and short polyamines (spermine and spermidine) share many features of IDP-based coacervates. PolyU/polyamine coacervates compartmentalize biomolecules (peptides, oligonucleotides) in a sequence- and length-dependent manner. These solutes retain mobility within the coacervate droplets, as demonstrated by rapid recovery from photobleaching. Coacervation is reversible with changes in solution temperature due to changes in the polyU structure that impact its interactions with polyamines. We further demonstrate that lipid vesicles assemble at the droplet interface without impeding RNA entry/egress. These vesicles remain intact at the interface and can be released upon temperature-induced droplet dissolution.

PubMed Disclaimer

Publication types

LinkOut - more resources