Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 6;16(1):719.
doi: 10.1186/s12885-016-2755-6.

Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing

Affiliations

Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing

Guo Li et al. BMC Cancer. .

Abstract

Background: Radioresistance is one of the major factors limiting the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence has suggested that aberrant expression of long noncoding RNAs (lncRNAs) contributes to cancer progression. Therefore, here we identified lncRNAs associated with radioresistance in NPC.

Methods: The differential expression profiles of lncRNAs associated with NPC radioresistance were constructed by next-generation deep sequencing by comparing radioresistant NPC cells with their parental cells. LncRNA-related mRNAs were predicted and analyzed using bioinformatics algorithms compared with the mRNA profiles related to radioresistance obtained in our previous study. Several lncRNAs and associated mRNAs were validated in established NPC radioresistant cell models and NPC tissues.

Results: By comparison between radioresistant CNE-2-Rs and parental CNE-2 cells by next-generation deep sequencing, a total of 781 known lncRNAs and 2054 novel lncRNAs were annotated. The top five upregulated and downregulated known/novel lncRNAs were detected using quantitative real-time reverse transcription-polymerase chain reaction, and 7/10 known lncRNAs and 3/10 novel lncRNAs were demonstrated to have significant differential expression trends that were the same as those predicted by deep sequencing. From the prediction process, 13 pairs of lncRNAs and their associated genes were acquired, and the prediction trends of three pairs were validated in both radioresistant CNE-2-Rs and 6-10B-Rs cell lines, including lncRNA n373932 and SLITRK5, n409627 and PRSS12, and n386034 and RIMKLB. LncRNA n373932 and its related SLITRK5 showed dramatic expression changes in post-irradiation radioresistant cells and a negative expression correlation in NPC tissues (R = -0.595, p < 0.05).

Conclusions: Our study provides an overview of the expression profiles of radioresistant lncRNAs and potentially related mRNAs, which will facilitate future investigations into the function of lncRNAs in NPC radioresistance.

Keywords: Deep sequencing; Long noncoding RNA; Nasopharyngeal carcinoma; Radioresistance.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The work flow of constructing long noncoding RNA profiles correlated with NPC radioresistance
Fig. 2
Fig. 2
Overview of known lncRNAs associated with NPC radioresistance. a The length distributions of the transcripts. b The known lncRNAs identified in CNE-2 and CNE-2-Rs cells. The shaded area represented the lncRNAs found in both samples, and the areas coloured red and blue showed the number of lncRNAs expressed in samples CNE-2 and CNE-2-Rs, respectively. c Scatter plot of lncRNA expression profiles in radiosensitive CNE-2 (x-axis) and radioresistant CNE-2-Rs cells (y-axis). The significantly up-regulated lncRNAs were marked in red and the down-regulated lncRNAs in blue. |log2 Fold change| ≥ 1 and FDR < 0.001. d Validation of the expression levels of the top five up-regulated and down-regulated known lncRNAs via qRT-PCR
Fig. 3
Fig. 3
Overview of novel lncRNA candidates associated with NPC radioresistance. a The length distributions of the transcripts. b The novel transcripts identified in CNE-2 and CNE-2-Rs cells. The shaded areas represented the lncRNAs found in both samples, and the areas coloured red and blue showed the number of lncRNAs expressed in samples CNE-2 and CNE-2-Rs, respectively. c Scatter plot of lncRNA expression profiles in radiosensitive CNE-2 (x-axis) and radioresistant CNE-2-Rs cells (y-axis). The significantly up-regulated novel lncRNAs were marked in red and the down-regulated lncRNAs in blue. |log2 Fold change| ≥ 1 and FDR < 0.001. d Validation of the expression of the top five up-regulated and down-regulated novel transcripts via qRT-PCR
Fig. 4
Fig. 4
Validation of the lncRNAs and associated genes by qRT-PCR. Three pairs of lncRNAs and their associated genes exhibited corresponding changes in the prediction and both radioresistant cell lines, including lncRNA n373932 and SLITRK5, n409627 and PRSS12, and n386034 and RIMKLB
Fig. 5
Fig. 5
Detection of the lncRNAs and associated genes by qRT-PCR in irradiated cells and NPC cells. a, b lncRNA n373932 and SLITRK5 had dramatic mRNA expression change in post-irradiation cell, expecially in radioresistant cells. c After making napierian logarithmic transformation and Bivariate Correlation analyses, we found that n373932 and SLITRK5 had a negative exprssion correlation (R = −0.595, p < 0.001, Fig. 5c)

Similar articles

Cited by

References

    1. Jia WH, Huang QH, Liao J, Ye W, Shugart YY, Liu Q, et al. Trends in incidence and mortality of nasopharyngeal carcinoma over a 20–25 year period (1978/1983-2002) in Sihui and Cangwu counties in southern China. BMC Cancer. 2006;6:178. doi: 10.1186/1471-2407-6-178. - DOI - PMC - PubMed
    1. Xu ZJ, Zheng RS, Zhang SW, Zou XN, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in China in 2009. Chin J Cancer. 2013;32(8):453–60. doi: 10.5732/cjc.013.10118. - DOI - PMC - PubMed
    1. Wang WJ, Wu SP, Liu JB, Shi YS, Huang X, Zhang QB, et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 2013;73(3):1219–31. doi: 10.1158/0008-5472.CAN-12-1408. - DOI - PubMed
    1. Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–96. doi: 10.4161/cc.11.4.19228. - DOI - PMC - PubMed
    1. Wang Y, Yin W, Zhu X. Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol. 2014;134(1):105–10. doi: 10.3109/00016489.2013.844365. - DOI - PubMed

MeSH terms

LinkOut - more resources