Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 8;10(9):e0004923.
doi: 10.1371/journal.pntd.0004923. eCollection 2016 Sep.

Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution

Affiliations

Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution

Kym S Antonation et al. PLoS Negl Trop Dis. .

Abstract

Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Geographic locations of carcasses.
Red diamonds show sites where Bacillus cereus bv anthracis isolates have been detected, the star represents the site where the bovine isolate B. cereus JF3964 was found. Locations (GPS data) and animal carcasses for B. cereus bv anthracis are: Taï National Park (CI)–chimpanzee (5°50.876’N, 7°19.679’W); Dja Wildlife Reserve (CAM)–gorilla, chimpanzee (3°07.589’N, 13°06.543’E); Dzanga-Sangha (RCA)–gorilla, chimpanzee, elephant (2°53.747’N, 16°24.208’E); Luebo (DRC)–goat (5°21.074’S, 21°25.298’E). Strain JF3964: Koza (CAM)–cattle (10°57.769’N, 13°55.560’E).
Fig 2
Fig 2. Maximum likelihood tree based on core chromosomal SNP data.
A: Full tree. B: Zoom-in focused on the Bacillus cereus biovar anthracis clade. Bacillus anthracis sequences are black, Bacillus cereus and Bacillus thuringiensis red and B. cereus bv anthracis blue. Branch support values were estimated by approximate likelihood ratio tests and are only reported for these internal branches not supported by maximal values. This tree was rooted with TempEst v1.5.
Fig 3
Fig 3. Maximum likelihood tree based on core plasmid SNP data.
A: pXO1. B: pXO2. Bacillus anthracis sequences are black, Bacillus cereus red and Bacillus cereus biovar anthracis blue. Branch support values were estimated by approximate likelihood ratio tests and are only reported for these internal branches not supported by maximal values. The trees were rooted with TempEst v1.5.

Similar articles

Cited by

References

    1. World Organisation for Animal Health (OIE), World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO). Anthrax in humans and animals. Fourth Edition Geneva: WHO; 2008.
    1. Kolsto AB, Tourasse NJ, Okstad OA. What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol. 2009; 63:451–476. 10.1146/annurev.micro.091208.073255 - DOI - PubMed
    1. Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J, et al. Global genetic population structure of Bacillus anthracis. PLoS ONE. 2007; 2(5):e461 - PMC - PubMed
    1. Hampson K, Lembo T, Bessell P, Auty H, Packer C, Halliday J, et al. Predictability of anthrax infection in the Serengeti, Tanzania. J Appl Ecol. 2011; 48(6):1333–1344. - PMC - PubMed
    1. Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA. 2004; 101(22):8449–8454. - PMC - PubMed

Publication types