Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Oct;68(7):1151-60.
doi: 10.1080/01635581.2016.1208832. Epub 2016 Aug 11.

Sporoderm-Broken Spores of Ganoderma lucidum Inhibit the Growth of Lung Cancer: Involvement of the Akt/mTOR Signaling Pathway

Affiliations
Comparative Study

Sporoderm-Broken Spores of Ganoderma lucidum Inhibit the Growth of Lung Cancer: Involvement of the Akt/mTOR Signaling Pathway

Yali Chen et al. Nutr Cancer. 2016 Oct.

Abstract

The sporoderm-broken spores of Ganoderma lucidum (SBGS) and their extracts exhibited a wide range of biological activities. In the present study, we prepare ethanol/ethanol extract (E/E-SBGS) and ethanol/aqueous extract (E/A-SBGS) from SBGS and examine their antitumor activities against human lung cancer. Our results showed that E/E-SBGS, not E/A-SBGS, inhibited the survival and migration of lung cancer cells in a dose-dependent manner. E/E-SBGS arrested cell cycle at G2/M phase and triggered apoptosis by decreasing the expression and activity of cell cycle regulators, cyclin B1 and cdc2, as well as anti-apoptotic proteins, Bcl-2 and Bcl-xl. Consequently, colony formation of lung cancer cells was markedly blocked by E/E-SBGS at subtoxic concentrations. Oral administration of both E/E-SBGS and SBGS significantly suppressed tumor volume and tumor weight without gross toxicity in mice. Mechanism study showed that E/E-SBGS dose-dependently suppressed the activation of Akt, the mammalian target of rapamycin (mTOR) and their downstream molecules S6 kinase and 4E-BP1 in treated tumor cells. Taken together, these results indicate that the ethanol extract of sporoderm-broken spores of G. lucidum suppresses the growth of human lung cancer, at least in part, through inhibition of the Akt/mTOR signaling pathway, suggesting its potential role in cancer treatments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources