Real-time 3D imaging of microstructure growth in battery cells using indirect MRI
- PMID: 27621444
- PMCID: PMC5047163
- DOI: 10.1073/pnas.1607903113
Real-time 3D imaging of microstructure growth in battery cells using indirect MRI
Abstract
Lithium metal is a promising anode material for Li-ion batteries due to its high theoretical specific capacity and low potential. The growth of dendrites is a major barrier to the development of high capacity, rechargeable Li batteries with lithium metal anodes, and hence, significant efforts have been undertaken to develop new electrolytes and separator materials that can prevent this process or promote smooth deposits at the anode. Central to these goals, and to the task of understanding the conditions that initiate and propagate dendrite growth, is the development of analytical and nondestructive techniques that can be applied in situ to functioning batteries. MRI has recently been demonstrated to provide noninvasive imaging methodology that can detect and localize microstructure buildup. However, until now, monitoring dendrite growth by MRI has been limited to observing the relatively insensitive metal nucleus directly, thus restricting the temporal and spatial resolution and requiring special hardware and acquisition modes. Here, we present an alternative approach to detect a broad class of metallic dendrite growth via the dendrites' indirect effects on the surrounding electrolyte, allowing for the application of fast 3D (1)H MRI experiments with high resolution. We use these experiments to reconstruct 3D images of growing Li dendrites from MRI, revealing details about the growth rate and fractal behavior. Radiofrequency and static magnetic field calculations are used alongside the images to quantify the amount of the growing structures.
Keywords: Li-ion batteries; dendrite growth; in situ MRI.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








References
-
- Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–367. - PubMed
-
- Sannier L, et al. Room temperature lithium metal batteries based on a new gel polymer electrolyte membrane. J Power Sources. 2005;144(1):231–237.
-
- Crowther O, West AC. Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc. 2008;155(11):A806–A811.
-
- Brissot C, Rosso M, Chazalviel J-N, Baudry P, Lascaud S. In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta. 1998;43(10–11):1569–1574.
-
- Orsini F, et al. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J Power Sources. 1998;76(1):19–29.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources