A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
- PMID: 27622079
- PMCID: PMC5017314
- DOI: 10.1167/tvst.5.4.14
A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Abstract
Purpose: We developed a statistical model to improve the detection of glaucomatous visual field (VF) progression as defined by the consensus of expert clinicians.
Methods: We developed new methodology in the Bayesian setting to properly model the progression status of a patient (as determined by a group of expert clinicians) as a function of changes in spatially correlated sensitivities at each VF location jointly. We used a spatial probit regression model that jointly incorporates all highly correlated VF changes in a single framework while accounting for structural similarities between neighboring VF regions.
Results: Our method had improved model fit and predictive ability compared to competing models as indicated by the deviance information criterion (198.15 vs. 201.29-213.38), a posterior predictive model selection metric (130.08 vs. 142.08-155.59), area under the receiver operating characteristic curve (0.80 vs. 0.59-0.72; all P values < 0.018), and optimal sensitivity (0.92 vs. 0.28-0.82). Simulation study results suggest that estimation (reduction of mean squared errors) and inference (correct coverage of 95% credible intervals) for the model parameters are improved when spatial modeling is incorporated.
Conclusions: We developed a statistical model for the detection of VF progression defined by clinician expert consensus that accounts for spatially correlated changes in visual sensitivity over time, and showed that it outperformed competing models in a number of areas.
Translational relevance: This model may easily be incorporated into routine clinical practice and be useful for detecting glaucomatous VF progression defined by clinician expert consensus.
Keywords: conditional autoregressive model; glaucoma progression; spatially correlated predictors; spatially varying coefficients; visual field.
Figures



Similar articles
-
A spatially varying change points model for monitoring glaucoma progression using visual field data.Spat Stat. 2019 Apr;30:1-26. doi: 10.1016/j.spasta.2019.02.001. Epub 2019 Feb 22. Spat Stat. 2019. PMID: 30931247 Free PMC article.
-
A Data-Driven Model for Simulating Longitudinal Visual Field Tests in Glaucoma.Transl Vis Sci Technol. 2023 Jun 1;12(6):27. doi: 10.1167/tvst.12.6.27. Transl Vis Sci Technol. 2023. PMID: 37382576 Free PMC article.
-
[The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma].Zhonghua Yan Ke Za Zhi. 2018 Mar 11;54(3):171-176. doi: 10.3760/cma.j.issn.0412-4081.2018.03.005. Zhonghua Yan Ke Za Zhi. 2018. PMID: 29518874 Chinese.
-
Can Artificial Intelligence Predict Glaucomatous Visual Field Progression? A Spatial-Ordinal Convolutional Neural Network Model.Am J Ophthalmol. 2022 Jan;233:124-134. doi: 10.1016/j.ajo.2021.06.025. Epub 2021 Jul 17. Am J Ophthalmol. 2022. PMID: 34283982
-
[Aiming for zero blindness].Nippon Ganka Gakkai Zasshi. 2015 Mar;119(3):168-93; discussion 194. Nippon Ganka Gakkai Zasshi. 2015. PMID: 25854109 Review. Japanese.
Cited by
-
Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method.Sci Rep. 2019 Mar 15;9(1):4642. doi: 10.1038/s41598-018-37127-z. Sci Rep. 2019. PMID: 30874616 Free PMC article.
-
Forecasting future Humphrey Visual Fields using deep learning.PLoS One. 2019 Apr 5;14(4):e0214875. doi: 10.1371/journal.pone.0214875. eCollection 2019. PLoS One. 2019. PMID: 30951547 Free PMC article.
-
A spatially varying change points model for monitoring glaucoma progression using visual field data.Spat Stat. 2019 Apr;30:1-26. doi: 10.1016/j.spasta.2019.02.001. Epub 2019 Feb 22. Spat Stat. 2019. PMID: 30931247 Free PMC article.
-
3D Analysis of Upper Limbs Motion during Rehabilitation Exercises Using the KinectTM Sensor: Development, Laboratory Validation and Clinical Application.Sensors (Basel). 2018 Jul 10;18(7):2216. doi: 10.3390/s18072216. Sensors (Basel). 2018. PMID: 29996533 Free PMC article.
-
Investigating spillover of multidrug-resistant tuberculosis from a prison: a spatial and molecular epidemiological analysis.BMC Med. 2018 Aug 3;16(1):122. doi: 10.1186/s12916-018-1111-x. BMC Med. 2018. PMID: 30071850 Free PMC article.
References
-
- Bengtsson B,, Heijl A. A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol. 2008. ; 145: 343–353. - PubMed
-
- Caprioli J,, Mock D,, Bitrian E,, et al. A method to measure and predict rates of regional visual field decay in glaucoma. Invest Ophthalmol Vis Sci. 2011. ; 52: 4765–4773. - PubMed
-
- Betz-Stablein BD,, Morgan WH,, House PH,, Hazelton ML. Spatial modeling of visual field data for assessing glaucoma progression. Invest Ophthalmol Vis Sci. 2013. ; 54: 1544–1553. - PubMed
-
- Tanna AP,, Bandi JR,, Budenz DL,, et al. Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. Ophthalmology. 2011. ; 118: 60–65. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources