Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Sep 15;24(1):111.
doi: 10.1186/s13049-016-0303-7.

Accidental hypothermia-an update : The content of this review is endorsed by the International Commission for Mountain Emergency Medicine (ICAR MEDCOM)

Affiliations
Review

Accidental hypothermia-an update : The content of this review is endorsed by the International Commission for Mountain Emergency Medicine (ICAR MEDCOM)

Peter Paal et al. Scand J Trauma Resusc Emerg Med. .

Abstract

Background: This paper provides an up-to-date review of the management and outcome of accidental hypothermia patients with and without cardiac arrest.

Methods: The authors reviewed the relevant literature in their specialist field. Summaries were merged, discussed and approved to produce this narrative review.

Results: The hospital use of minimally-invasive rewarming for non-arrested, otherwise healthy, patients with primary hypothermia and stable vital signs has the potential to substantially decrease morbidity and mortality for these patients. Extracorporeal life support (ECLS) has revolutionised the management of hypothermic cardiac arrest, with survival rates approaching 100 % in some cases. Hypothermic patients with risk factors for imminent cardiac arrest (temperature <28 °C, ventricular arrhythmia, systolic blood pressure <90 mmHg), and those who have already arrested, should be transferred directly to an ECLS-centre. Cardiac arrest patients should receive continuous cardiopulmonary resuscitation (CPR) during transfer. If prolonged transport is required or terrain is difficult, mechanical CPR can be helpful. Delayed or intermittent CPR may be appropriate in hypothermic arrest when continuous CPR is impossible. Modern post-resuscitation care should be implemented following hypothermic arrest. Structured protocols should be in place to optimise pre-hospital triage, transport and treatment as well as in-hospital management, including detailed criteria and protocols for the use of ECLS and post-resuscitation care.

Conclusions: Based on new evidence, additional clinical experience and clearer management guidelines and documentation, the treatment of accidental hypothermia has been refined. ECLS has substantially improved survival and is the treatment of choice in the patient with unstable circulation or cardiac arrest.

Keywords: Cardiopulmonary bypass; Cardiopulmonary resuscitation; Emergency medicine; Extracorporeal membrane oxygenation; Hypothermia; Resuscitation.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Management in Accidental Hypothermia. (*) Decapitation; truncal transection; whole body decomposed or whole body frozen solid (chest wall not compressible) [128]. (†) SBP <90 mmHg is a reasonable prehospital estimate of cardiac instability but for in-hospital decisions, the minimum sufficient circulation for a deeply hypothermic patient (e.g., <28 °C) has not been defined. (‡) Swiss staging of accidental hypothermia [73], see also Table 1. (§) In remote areas, transport decisions should balance the risk of increased transport time with the potential benefit of treatment in an ECLS centre. (||) Warm environment, chemical, electrical, or forced air heating packs or blankets, and warm IV fluids (38–42 °C). In case of cardiac instability refractory to medical management, consider rewarming with ECLS. (¶) If the decision is made to stop at an intermediate hospital to measure serum potassium, a hospital en route towards the ECLS centre should be chosen. (**) See Table 3. CPR denotes cardiopulmonary resuscitation, DNR do-not-resuscitate, ECLS extracorporeal life support, HT hypothermia, MD medical doctor, ROSC return of spontaneous circulation, SBP systolic blood pressure
Fig. 2
Fig. 2
Delayed and intermittent CPR in in hypothermic patients when continuous CPR is not possible during difficult rescue missions [9]

References

    1. Debaty G, Moustapha I, Bouzat P, Maignan M, Blancher M, Rallo A, et al. Outcome after severe accidental hypothermia in the French Alps: A 10-year review. Resuscitation. 2015;93:118–123. doi: 10.1016/j.resuscitation.2015.06.013. - DOI - PubMed
    1. Dunne B, Christou E, Duff O, Merry C. Extracorporeal-Assisted Rewarming in the Management of Accidental Deep Hypothermic Cardiac Arrest: A Systematic Review of the Literature. Heart Lung Circ. 2014;23(11):1029–1035. doi: 10.1016/j.hlc.2014.06.011. - DOI - PubMed
    1. Boue Y, Lavolaine J, Bouzat P, Matraxia S, Chavanon O, Payen JF. Neurologic recovery from profound accidental hypothermia after 5 h of cardiopulmonary resuscitation. Crit Care Med. 2014;42(2):e167–e170. doi: 10.1097/CCM.0b013e3182a643bc. - DOI - PubMed
    1. Mair P, Brugger H, Mair B, Moroder L, Ruttmann E. Is extracorporeal rewarming indicated in avalanche victims with unwitnessed hypothermic cardiorespiratory arrest? High Alt Med Biol. 2014;15(4):500–503. doi: 10.1089/ham.2014.1066. - DOI - PubMed
    1. Walpoth BH, Walpoth-Aslan BN, Mattle HP, Radanov BP, Schroth G, Schaeffler L, et al. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med. 1997;337(21):1500–1505. doi: 10.1056/NEJM199711203372103. - DOI - PubMed

MeSH terms