Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec:84:42-50.
doi: 10.1016/j.biopha.2016.09.010. Epub 2016 Sep 14.

Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications

Affiliations
Review

Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications

Naqi Lian et al. Biomed Pharmacother. 2016 Dec.

Abstract

Hypertrophic scars represent the most common complication of skin injury and are caused by excessive cutaneous wound healing characterized by hypervascularity and pathological deposition of extracellular matrix (ECM) components. To date, the optimal and specific treatment methods for hypertrophic scars have not been available in the clinic. Current paradigm has established fibroblasts and myofibroblasts as pivotal effector cells in the pathophysiology of wound healing. Their biological properties including origin, proliferation, migration, contraction and ECM regulation have profound impacts on the progression and regression of hypertrophic scars. These complex processes are executed and modulated by a signaling network involving a number of growth factors and cytokines. Of particular importance is transforming growth factor-β, platelet-derived growth factor, connective tissue growth factor, epidermal growth factor, and vascular endothelial growth factor. This review article briefly describes the biological functions of fibroblasts and myofibroblasts during hypertrophic scars, and thereafter examines the up-to-date molecular knowledge on the roles of key growth factor pathways in the pathophysiology of hypertrophic scars. Importantly, the therapeutic implications and future challenges of these molecular discoveries are critically discussed in the hope of advancing therapeutic approaches to limit pathological scar formation.

Keywords: Growth factor; Hypertrophic scars; Signaling pathway; Therapeutic implication; Wound healing.

PubMed Disclaimer

MeSH terms

Substances