Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;36(3):661-670.
doi: 10.1002/etc.3615. Epub 2016 Oct 28.

Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs

Affiliations

Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs

Meredith G Clayden et al. Environ Toxicol Chem. 2017 Mar.

Abstract

Nitrogen and carbon stable isotopes (δ15 N, δ13 C) are commonly used to understand mercury (Hg) bioaccumulation and biomagnification in freshwater food webs. Though sulfur isotopes (δ34 S) can distinguish between energy sources from the water column (aqueous sulfate) and from sediments to freshwater organisms, little is known about whether δ34 S can help interpret variable Hg concentrations in aquatic species or food webs. Seven acidic lakes in Kejimkujik National Park (Nova Scotia, Canada) were sampled for biota, water, and sediments in 2009 and 2010. Fishes, zooplankton, and macroinvertebrates were analyzed for δ34 S, δ15 N, δ13 C, and Hg (methyl Hg in invertebrates, total Hg in fishes); aqueous sulfate and profundal sediments were analyzed for δ34 S. Within lakes, mean δ34 S values in sediments and sulfate differed between 0.53‰ and 1.98‰, limiting their use as tracers of energy sources to the food webs. However, log-Hg and δ34 S values were negatively related (slopes -0.14 to -0.35, R2 0.20-0.39, p < 0.001-0.01) through each food web, and slopes were significantly different among lakes (analysis of covariance, lake × δ34 S interaction term p = 0.04). Despite these relationships, multiple regression analyses within each taxon showed that biotic Hg concentrations were generally better predicted by δ15 N and/or δ13 C. The results indicate that δ34 S values are predictive of Hg concentrations in these food webs, although the mechanisms underlying these relationships warrant further study. Environ Toxicol Chem 2017;36:661-670. © 2016 SETAC.

Keywords: Acidic lake; Bioavailability; Biomagnification; Food web; Methylmercury; Stable isotope; Sulfur; Trophic transfer.

PubMed Disclaimer

Similar articles

LinkOut - more resources