Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 20;13(9):e1002128.
doi: 10.1371/journal.pmed.1002128. eCollection 2016 Sep.

Chronic Kidney Disease in Primary Care: Outcomes after Five Years in a Prospective Cohort Study

Affiliations

Chronic Kidney Disease in Primary Care: Outcomes after Five Years in a Prospective Cohort Study

Adam Shardlow et al. PLoS Med. .

Abstract

Background: Chronic kidney disease (CKD) is commonly managed in primary care, but most guidelines have a secondary care perspective emphasizing the risk of end-stage kidney disease (ESKD) and need for renal replacement therapy. In this prospective cohort study, we sought to study in detail the natural history of CKD in primary care to better inform the appropriate emphasis for future guidance.

Methods and findings: In this study, 1,741 people with CKD stage 3 were individually recruited from 32 primary care practices in Derbyshire, United Kingdom. Study visits were undertaken at baseline, year 1, and year 5. Binomial logistic regression and Cox proportional hazards models were used to model progression, CKD remission, and all-cause mortality. We used Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define CKD progression and defined CKD remission as the absence of diagnostic criteria (estimated glomerular filtration rate [eGFR] >60 ml/min/1.73 m2 and urine albumin-to-creatinine ratio [uACR] <3 mg/mmol) at any study visit. Participants were predominantly elderly (mean ± standard deviation (SD) age 72.9 ± 9.0 y), with relatively mild reduction in GFR (mean ± SD eGFR 53.5 ± 11.8 mL/min/1,73 m2) and a low prevalence of albuminuria (16.9%). After 5 y, 247 participants (14.2%) had died, most of cardiovascular causes. Only 4 (0.2%) developed ESKD, but 308 (17.7%) evidenced CKD progression by KDIGO criteria. Stable CKD was observed in 593 participants (34.1%), and 336 (19.3%) met the criteria for remission. Remission at baseline and year 1 was associated with a high likelihood of remission at year 5 (odds ratio [OR] = 23.6, 95% CI 16.5-33.9 relative to participants with no remission at baseline and year 1 study visits). Multivariable analyses confirmed eGFR and albuminuria as key risk factors for predicting adverse as well as positive outcomes. Limitations of this study include reliance on GFR estimated using the Modification of Diet in Renal Disease study (MDRD) equation for recruitment (but not subsequent analysis) and a study population that was predominantly elderly and white, implying that the results may not be directly applicable to younger populations of more diverse ethnicity.

Conclusions: Management of CKD in primary care should focus principally on identifying the minority of people at high risk of adverse outcomes, to allow intervention to slow CKD progression and reduce cardiovascular events. Efforts should also be made to identify and reassure the majority who are at low risk of progression to ESKD. Consideration should be given to adopting an age-calibrated definition of CKD to avoid labelling a large group of people with age-related decline in GFR and low associated risk as having CKD.

PubMed Disclaimer

Conflict of interest statement

MWT is a member of the PLOS Medicine editorial board.

Figures

Fig 1
Fig 1. Flowchart showing study participant outcomes and follow-up.
Fig 2
Fig 2. Flowchart showing numbers of participants demonstrating CKD and CKD remission at each study visit.
Arrows indicate numbers of participants transitioning from one condition to the other.

Comment in

References

    1. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. Jama. 2014;311(24):2518–31. 10.1001/jama.2014.6634 - DOI - PMC - PubMed
    1. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. Jama. 2011;305(15):1553–9. 10.1001/jama.2011.451 . - DOI - PubMed
    1. James MT, Grams ME, Woodward M, Elley CR, Green JA, Wheeler DC, et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2015;66(4):602–12. 10.1053/j.ajkd.2015.02.338 . - DOI - PMC - PubMed
    1. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. The lancet Diabetes & endocrinology. 2015;3(7):514–25. 10.1016/S2213-8587(15)00040-6 . - DOI - PMC - PubMed
    1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. The New England journal of medicine. 2004;351(13):1296–305. 10.1056/NEJMoa041031 . - DOI - PubMed

Publication types