Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 7;61(19):7162-7186.
doi: 10.1088/0031-9155/61/19/7162. Epub 2016 Sep 20.

Estimating the brain pathological age of Alzheimer's disease patients from MR image data based on the separability distance criterion

Affiliations

Estimating the brain pathological age of Alzheimer's disease patients from MR image data based on the separability distance criterion

Yongming Li et al. Phys Med Biol. .

Abstract

Traditional age estimation methods are based on the same idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to accelerated brain aging. This paper considers this deviation and searches for it by maximizing the separability distance value rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to prior knowledge. Secondly, use the support vector regression (SVR) as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the separability distance criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. The experimental results showed that the separability was apparently improved. For normal control-Alzheimer's disease (NC-AD), normal control-mild cognition impairment (NC-MCI), and MCI-AD, the average improvements were 0.178 (35.11%), 0.033 (14.47%), and 0.017 (39.53%), respectively. For NC-MCI-AD, the average improvement was 0.2287 (64.22%). The estimated brain pathological age could be not only more helpful to the classification of AD but also more precisely reflect accelerated brain aging. In conclusion, this paper offers a new method for brain age estimation that can distinguish different states of AD and can better reflect the extent of accelerated aging.

PubMed Disclaimer

LinkOut - more resources