Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 21;17(1):43.
doi: 10.1186/s40360-016-0086-5.

Current statins show calcium channel blocking activity through voltage gated channels

Affiliations

Current statins show calcium channel blocking activity through voltage gated channels

Niaz Ali et al. BMC Pharmacol Toxicol. .

Abstract

Background: Statins are used for treatment of hypercholestremia. Common adverse reports associated with use of statins are generalized bodyache, rhabdomyolysis, muscles weakness and gastrointestinal disorders. The current work is an attempt to explain how smooth muscles of gastrointestinal tissues are affected by the current statins (Simvastatin, atorvastatin, fluvastatin and rosuvastatin).

Methods: Effects of the current statins were studied on spontaneous activity of isolated rabbits' jejunal preparations. Different molar concentrations (10(-12)-10(-2)M) of the statins were applied on spontaneously contracting rabbits' jejunal preparations. As statins relaxed spontaneous activity, so we tested the statins on KCl (80 mM) induced contractions in similar test concentrations. Positive relaxant statins were tested again through construction of Calcium Concentration Response Curves (CCRCs) in the absence and presence of the statins using verapamil, a standard calcium channel blocker. CCRCs of statins were compared with CCRCs of verapamil.

Results: Simvastatin, atorvastatin, fluvastatin and rosuvastatin relaxed the spontaneous and KCl-induced contractions. IC50 for simvastatin on spontaneous rabbit's jejunal preparations is -5.08 ± 0.1 Log 10 M. Similarly, IC50 for KCl-induced contractions is -4.25 ± 0.01 Log 10 M. Mean IC50 (Log 10 M) for atorvastatin on spontaneous rabbit's jejunal preparations and KCl-induced contractions are -5.19 ± 0.07 and -4.37 ± 0.09, respectively. Fluvastatin relaxed spontaneous activity of rabbits' jejunal preparations with an IC50 (Log 10 M) -4.5 ± 0.03. Rosuvastatin relaxed spontaneous as well as KCl (80 mM) induced contractions with respective IC50 (Log 10 M) -3.62 ± 0.04 and -4.57 ± 0.06. In case of CCRCs, tissues pre-treated with 4.6 μg/ml of simvastatin, have IC50 = -1.84 ± 0.03 [log (Ca(++)) M] vs control IC50 = -2.54 ± 0.04 [log (Ca(++)) M]. Similarly, atorvastatin, fluvastatin and rosuvastatin produced significant right shift in IC50 for CCRCs (P ≤ 0.05). In case of verapamil, IC50 for control curves is -2.45 ± 0.06 [log (Ca (++)) M], while IC50 in presence of verapamil (0.1 μM) is -1.69 ± 0.05 [log (Ca (++)) M]. Statins produced right shift in the IC50 of CCRCs. The effects of statins are like that of effects of verapamil, a standard calcium channel blocker.

Conclusions: Our findings suggest that current statins have calcium antagonistic effects that act on voltage gated calcium channels that may provide a rationale for cause muscle weakness and gastrointestinal disorders.

Keywords: Atorvastatin; Fluvastatin; Rosuvastatin; Simvastatin; Statins; Verapamil; Voltage gated calcium channels.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
To show the effect of a simvastatin, b atorvastatin, c rosuvastatin, d fluvastatin, and e verapamil on spontaneous and KCl-induced contractions. (Effects is expressed as percent of control maximum, n = 5)
Fig. 2
Fig. 2
To show the effect of a simvastatin, b atorvastatin, c fluvastatin, d rosuvastatin, and e verapamil on calcium chloride curve compared to that of the respective controls

Similar articles

Cited by

References

    1. Parish E, Bloom T, Godlee F. Statins for people at low risk. 2015. - PubMed
    1. Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med. 2001;5:378–387. doi: 10.1111/j.1582-4934.2001.tb00172.x. - DOI - PMC - PubMed
    1. Glynn RJ, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med. 2009;360:1851–1861. doi: 10.1056/NEJMoa0900241. - DOI - PMC - PubMed
    1. Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2:517–526. doi: 10.1038/nrd1112. - DOI - PubMed
    1. Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Clin Pharmacokinet. 1997;32:403–425. doi: 10.2165/00003088-199732050-00005. - DOI - PubMed

Publication types

Substances