Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep;31(5):373-81.
doi: 10.1002/hup.2546.

Systematic review of blood transcriptome profiling in neuropsychiatric disorders: guidelines for biomarker discovery

Affiliations

Systematic review of blood transcriptome profiling in neuropsychiatric disorders: guidelines for biomarker discovery

Michael S Breen et al. Hum Psychopharmacol. 2016 Sep.

Abstract

Introduction: The utility of blood for genome-wide gene expression profiling and biomarker discovery has received much attention in patients diagnosed with major neuropsychiatric disorders. While numerous studies have been conducted, statistical rigor and clarity in terms of blood-based biomarker discovery, validation, and testing are needed.

Methods: We conducted a systematic review of the literature to investigate methodological approaches and to assess the value of blood transcriptome profiling in research on mental disorders. We were particularly interested in statistical considerations related to machine learning, gene network analyses, and convergence across different disorders.

Results: A total of 108 peripheral blood transcriptome studies across 15 disorders were surveyed: 25 studies used a variety of machine learning techniques to assess putative clinical viability of the candidate biomarkers; 11 leveraged a higher-order systems-level perspective to identify gene module-based biomarkers; and nine performed analyses across two or more neuropsychiatric phenotypes. Notably, ~50% of the surveyed studies included fewer than 50 samples (cases and controls), while ~75% included less than 100.

Conclusions: Detailed consideration of statistical analysis in the early stages of experimental planning is critical to ensure blood-based biomarker discovery and validation. Statistical guidelines are presented to enhance implementation and reproducibility of machine learning and gene network analyses across independent studies. Future studies capitalizing on larger sample sizes and emerging next-generation technologies set the stage for moving the field forwards. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: blood-based biomarker; diagnosis; gene expression; gene network analysis; machine learning; prediction.

PubMed Disclaimer

Publication types

MeSH terms