Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 15;76(22):6607-6619.
doi: 10.1158/0008-5472.CAN-16-0990. Epub 2016 Sep 20.

Chronic Stress Facilitates Lung Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells

Affiliations

Chronic Stress Facilitates Lung Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells

Hyun-Ji Jang et al. Cancer Res. .

Abstract

Molecular insights into how chronic stress affects lung tumorigenesis may offer new routes to chemoprevention. In this study, we show that chronic stress in mice chemically or genetically initiated for lung cancer leads to the release of norepinephrine and other catecholamines, thereby promoting lung tumorigenesis. Mechanistically, norepinephrine induced phosphorylation of L-type voltage-dependent calcium channels (VDCC) through the β-adrenergic receptor-PKA pathway. VDCC triggered calcium mobilization, thereby inducing activation of IGF-1R via exocytosis of insulin-like growth factor 2 (IGF2). Mice expressing lung-specific IGF-1R exhibited accelerated lung tumor development in response to chronic stress. Notably, clinically approved antihypertensive drugs that block L-type VDCC prevented the effects of chronic stress or norepinephrine on the IGF2/IGF-1R signaling cascade, along with transformation of lung epithelial cells and lung tumor formation. Overall, our results identify an actionable mechanism to limit the effects of chronic stress on lung tumorigenesis. Cancer Res; 76(22); 6607-19. ©2016 AACR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources