Convolutional networks for fast, energy-efficient neuromorphic computing
- PMID: 27651489
- PMCID: PMC5068316
- DOI: 10.1073/pnas.1604850113
Convolutional networks for fast, energy-efficient neuromorphic computing
Abstract
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.
Keywords: TrueNorth; convolutional network; neural network; neuromorphic.
Conflict of interest statement
All authors are employees of IBM Research.
Figures




Comment in
-
Energy-efficient neural network chips approach human recognition capabilities.Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11387-11389. doi: 10.1073/pnas.1614109113. Epub 2016 Oct 4. Proc Natl Acad Sci U S A. 2016. PMID: 27702894 Free PMC article. No abstract available.
Similar articles
-
Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration.Front Neurosci. 2024 Mar 28;18:1335422. doi: 10.3389/fnins.2024.1335422. eCollection 2024. Front Neurosci. 2024. PMID: 38606307 Free PMC article.
-
SpikeAtConv: an integrated spiking-convolutional attention architecture for energy-efficient neuromorphic vision processing.Front Neurosci. 2025 Mar 12;19:1536771. doi: 10.3389/fnins.2025.1536771. eCollection 2025. Front Neurosci. 2025. PMID: 40143843 Free PMC article.
-
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.Materials (Basel). 2020 Feb 20;13(4):938. doi: 10.3390/ma13040938. Materials (Basel). 2020. PMID: 32093164 Free PMC article.
-
Deep Learning With Spiking Neurons: Opportunities and Challenges.Front Neurosci. 2018 Oct 25;12:774. doi: 10.3389/fnins.2018.00774. eCollection 2018. Front Neurosci. 2018. PMID: 30410432 Free PMC article. Review.
-
Thermal Management in Neuromorphic Materials, Devices, and Networks.Adv Mater. 2023 Sep;35(37):e2205098. doi: 10.1002/adma.202205098. Epub 2023 Mar 31. Adv Mater. 2023. PMID: 36067752 Review.
Cited by
-
Feature Representations for Neuromorphic Audio Spike Streams.Front Neurosci. 2018 Feb 9;12:23. doi: 10.3389/fnins.2018.00023. eCollection 2018. Front Neurosci. 2018. PMID: 29479300 Free PMC article.
-
Accelerating Inference of Convolutional Neural Networks Using In-memory Computing.Front Comput Neurosci. 2021 Aug 3;15:674154. doi: 10.3389/fncom.2021.674154. eCollection 2021. Front Comput Neurosci. 2021. PMID: 34413731 Free PMC article.
-
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.Front Neurosci. 2017 Jun 21;11:324. doi: 10.3389/fnins.2017.00324. eCollection 2017. Front Neurosci. 2017. PMID: 28680387 Free PMC article.
-
Monitoring time domain characteristics of Parkinson's disease using 3D memristive neuromorphic system.Front Comput Neurosci. 2023 Dec 15;17:1274575. doi: 10.3389/fncom.2023.1274575. eCollection 2023. Front Comput Neurosci. 2023. PMID: 38162516 Free PMC article.
-
Spiking Neural Networks for Structural Health Monitoring.Sensors (Basel). 2022 Nov 28;22(23):9245. doi: 10.3390/s22239245. Sensors (Basel). 2022. PMID: 36501946 Free PMC article.
References
-
- Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–536.
-
- Fukushima K. Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202. - PubMed
-
- LeCun Y, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–551.
-
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. - PubMed
-
- Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78(10):1629–1636.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources